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Abstract

The world around us is photographed millions of times a day, and a
lot of images find their way online. We present a way to use this data
to augment reality through a mobile phone. With our application,
the user can zoom in on a distant landmark using other people’s pho-
tographs. Our system relies on a 3D scene modeling back end that
computes the viewpoint of each photograph in an unordered large
photo collection. We present and discuss the overall system archi-
tecture, our implementation of the client application on the iPhone,
our approach to picking the best views to offer a zoom path, and the
complexities and limitations associated with mobile platforms.
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Figure 1: Related work: Photo Tourism browser

1 Introduction

The world around us is becoming increasingly well represented by pho-
tographs on the Internet. In the last year, the popular photo-sharing website
Flickr has received over 2.8 million new photos per day, on average1. Many of
the world’s landmarks are represented on such Internet photo repositories by
hundreds and sometimes hundreds of thousands of photos. Views of signif-
icant sites exist from almost every possible viewpoint, under a wide variety
of lighting, weather, and occlusion conditions. In addition to the prolifera-
tion of consumer photography, projects exist that aim to photographically
capture entire cities and countries from bird’s eye view or street level2.

Recent developments in efficient registration of images, figuring out corre-
spondences between images of the same physical place, allow us to represent
the three-dimensional structure of the real world with photographs. Appli-
cations such as Photo Tourism [10], or Microsoft’s consumer-oriented Pho-
toSynth3 seek to provide a way to browse through photos in an interactive
three-dimensional interface. These applications are a good way to interac-
tively tour a city or a museum from your own home, or to spice up a slideshow
of a vacation, but they are missing real-time, on location applicability.

In recent years, a higher and higher proportion of consumer cameras

1calculated from Flickr photo ids assigned to photos uploaded on June 3 2008 and June
3 2009

2The most well-known is Google StreetView, http://maps.google.com
3http://photosynth.net/
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are found embedded into cell phones. Their optical capabilities are usually
worse than the cheapest dedicated cameras, but their overwhelming avail-
ability means that often they are the only camera around. A parallel trend
is the improvement of bandwidth for cell phones, due to new generations of
telecommunication standards and increasing demand for mobile computing.
The “smartphone”–a device that combines a phone, an Internet-enabled mini
computer, and a camera–is rapidly increasing in market share of all mobile
devices.

The increasing coverage of the physical world by consumer photographs
and the increasing availability of powerful, Internet-connected, camera-equipped
mobile devices leads to our objective. We seek to access the rich represen-
tation of tourist landmarks on the Internet on a mobile device, in a useful
application that can serve as a tourist’s handheld companion. Our specific
objective is to provide the experience of zooming in on a distant landmark
by using other photos of it, having taken a picture of it on a mobile phone.
Our goal is a smooth, native-feeling interface that will provide the illusion of
actually zooming into an image.

1.1 Related work

There is a growing body of work on using mobile phones for augmented real-
ity. One approach tries to match an image taken on a mobile device against
a small database of landmarks tagged with keywords [12]. The retrieved
keywords are used to search the Internet through a text search for more re-
lated images. Those images are then matched to the original image, and the
relevant ones are returned, along with information about the landmark.

A team from Nokia Research has developed a fast outdoor augmented
reality mobile phone system that does feature extraction on the device, and
matches it an efficient database of highly relevant features that is optimized
for the user’s location [11]. A focus is made on speed and efficiency, in terms
of data size and matching algorithm. They use the SURF feature descriptor
[1], which is both more compressible and faster than the feature descriptor
used in our system. Their work achieves near real-time augmentation of
buildings with their retrieved names.

Adding to this work, Hile et al. [5] implement a landmark-based pedes-
trian navigation system. On a mobile phone, directions to a destination are
presented as a sequence of photographs of landmark buildings, augmented
with superimposed directional arrows. The landmark images are retrieved
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Figure 2: Our system objectives

from a geotagged database of photos. This is a concretely practical applica-
tion of photo-based augmented reality on a mobile phone, following in the
vein of such projects as PhoneGuide [3]. PhoneGuide is a mobile museum
guide that performs object recognition on the device using a neural network.

In the domain of assembling unordered photo collections into a user-
navigable 3D environment, the mentioned Photo Tourism and PhotoSynth
applications have covered a lot of ground. In the mobile space, there is an
iPhone client for displaying PhotoSynth data, but it does not attempt to
interact with the world in any way [7].

2 System overview

Our system consists of a client-server architecture. The client is a mobile
Internet-connected device with a camera. We implemented the client on the
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Figure 3: The structure from motion system registers unordered images and
produces a sparse point cloud.

Apple iPhone 3G. The client takes a picture of the object of interest, and
sends it to the server as a query. The server processes the image, matches it to
a bundle, and selects a set of images that offer views of increasing proximity
to the object. The client receives this set, and displays it in a 3D browser
that seeks to emulate the experience of actually zooming into the image.

2.1 The Back End

The fundamental source of data for our application is a set of geometrically
registered images and their recovered cameras, along with the feature points
they see. We call this set of data a bundle. We use an existing structure from
motion system that takes an unstructured, diverse collection of photographs,
and recovers the camera parameters for each image, along with a sparse point
cloud of feature points [10]. The photos are matched using SIFT features [6].
In the current system, these images are collected semi-manually from such
websites as Google Image Search, or added by users playing a sort of game
(more info in section 4).

2.2 Match

The first part of our system, the matching of an image taken by the mobile
client to a bundle containing other views of the object of interest, was not
implemented in our project. Instead, the user has to manually specify which
bundle they expect their photo to match to. It would not be hard to imple-
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ment matching, for efficient matching methods exist[ [8]], and the geolocation
information supplied by the mobile phone would reduce the number of po-
tential matching bundles to a very small number. It was never our goal to
do real-time matching, unlike some related projects (see section 1.1).

When the image is matched to a bundle, it is also incrementally added to
it, using fast pose estimation [9]. The bundle is thus updated with the new
image. In this way, users using the client application not only receive data
but also contribute more images to the system.

2.3 Select

A bundle can easily consist of several hundred images and tens of thousands
of points. For each image, we need to describe the camera parameters, and
list the points visible in the image. The compressed size of this data for a
bundle of several hundred images, which is a medium size for a bundle, is
over 10MB. Transferring this much data over a cell phone connection, or even
simply loading it on a memory-limited mobile device, is not feasible. Our
solution is to pre-select 10-20 images from the bundle, and transfer only this
subset of the bundle to the client.

We want to create a subset of the bundle that includes cameras on the
path from this query image to the object of interest, defined as the set of
feature points in the middle region of the query image. This is done by
constructing a graph of cameras, with weighted edges representing the cost
of moving from one camera to the other, with cost defined as the viewpoint
score (see section 3.2) of going to one camera from the other. We then find
the most zoomed-in image for the query image, and compute the shortest
path from it to the query image. This is the source set of our bundle subset.
The most zoomed-in image has the highest ratio of the area containing the
feature points of interest projected into the image to the total area of the
image.

2.4 Display

The main part of our system is the client application that provides the zoom
interface to the user. Our goal in this Display part of the system was to
closely mimic the native user interface way of zooming and moving around
an images, in order to provide an illusion of actually zooming into the pixels
of the image the user just took.
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Figure 4: We construct a graph of cameras and find the shortest path to the
most zoomed in camera.

Figure 5: The user moves the viewpoint forward by spreading their pinching
motion.
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The target client was the Apple iPhone, a popular smartphone with excel-
lent hardware capabilities and a multi-touch screen. The native photo viewer
on the iPhone allows the user to zoom in and out of an image with a “pinch”
motion, and translate the image with a one-finger swipe. Our application
mirrors this interface, with pinching motions translating the viewpoint for-
ward and backward (our equivalent of zooming in/out, details in section 3.2),
and one-finger swipes translating the viewpoint up/down and left/right. The
resulting user interface feels like the native iPhone photo viewer.

The viewpoint of the client is free-moving, not tied to an existing camera
viewpoint. If the client viewpoint is not at an existing camera, the best image
for that viewpoint is picked, and is reprojected to the desired viewpoint. This
permits the smooth experience of zooming in: as long as a given image is
still good, it will simply take up more and more screen space, until a better
image replaces it. This results in a more continuous user interface experience
than applications like PhotoSynth, or its mobile version iSynth (mentioned
in section 1.1), which limit potential user viewpoints to existing cameras,
with morphs between them.

It must be noted that while consistency with the native interface was
a goal that we achieved, our user interface also allows another degree of
freedom for the viewpoint: two-fingered swipes pan and tilt the camera. Our
data is three-dimensional, and this feature lets the user experience that. For
example, one could zoom close to the front of the building and then look up.
This degree of freedom is of course not possible with standard photos.

3 Client Implementation

In terms of the System Objectives in Figure 2, the client application deals
with Match and Display. We implemented the client application on the
iPhone OS 2.2 platform, running on the iPhone 3G.

3.1 Loading data

As was mentioned, true bundle matching was not implemented in this project,
and so it is the responsibility of the user to pick the bundle that their object
of interest will be added to. The user takes a picture (or selects one from the
device’s photo library) by pressing the Query button in the user interface.
This image is sent as an HTTP POST request to our server, along with the
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id of the bundle that the user has selected.
As the server processes and attempts to add the image to the bundle,

the client repeatedly requests the bundle subset information from a specific
server URL (more details in section 4). When it receives the data, in plain
text format, it reads it in and populates its list of images and points seen
by their cameras. It sets up a queue to download the image files that are
referenced in the bundle subset. These images are in the PVR compressed
OpenGL texture format, proprietary to the iPhone’s PowerVR graphics chip.
This format significantly reduces the amount of image data that needs to
be transferred, as images are encoded with a maximum of 4 bits per pixel.
Because the iPhone has a maximum texture size of 1024x1024, the maximum
size an image can be is 528KB. We do not use mipmapping, for it results
in images that appear too blurry when they occupy less than half of screen
space.

Based on the user’s viewpoint, an image may need to be displayed before
it has been downloaded. In that case, it goes to the front of the download
queue, and the user interface is frozen until it is downloaded. This may not
be good design if the device is not on a fast connection, because loading an
image can take up to 7 seconds on slow cell phone data connections. Another
design decision could be to simply not consider images that have not been
downloaded. The problem of download rates will be discussed further in
section 5.1

Once an image has been downloaded, it is cached on disk that should
persist between application starts. In case the same image is part of another
subset, it will be read from disk and not requested for the server.

3.2 Viewpoint evaluation

Our implementation of the rendering engine is based on Snavely’s work in
Finding Paths through the World’s Photos [9]. There are two components
to our approach: reprojection of images from their original cameras to new
viewpoints, and evaluation of potential reprojections with respect to quality.

The evaluation of candidate images to be reprojected to a new viewpoint
is done with a viewpoint scoring function, which is a combination of three
measures: angular deviation, field of view, and resolution. Angular deviation
is the average angle between rays from the image through a set of points in
the scene and rays from the viewpoint. Field of view is the area of the view
that is covered by reprojecting the image into it, weighted toward the center
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of the view. Resolution is the ratio of the number of pixels in the image to
the the number of pixels it would occupy on the screen when reprojected to
the new view.

The viewpoint has 5 degrees of freedom: forward/back, left/right, up/down
translations, pan, and tilt. The sixth degree of freedom, zoom through chang-
ing field of view, is not accessible through our interface. This may seem curi-
ous for a project entitled Virtual Zoom, but the way we implement “zoom” is
through forward/back translations, while keeping the field of view constant.
We found that this looks better and feels more natural than changing the
field of view. This design decision may merit further investigation, and a
more intelligent approach to picking the zoom subset on the server should
consider the degrees of freedom we chose.

3.3 Rendering

All images that are part of the loaded bundle subset are thus evaluated, and
the top image is the one that is used to render the viewpoint. If no image has
a non-zero score for a given viewpoint, only the point cloud is rendered. The
points contain color data, and a large number of them can convey a good
impression of the object’s structure. However, in our bundle subset we only
include points that are visible in the images, and so the point cloud is too
sparse to convey detailed structure.

On top of the point cloud, the best image is rendered. An image is
reprojected to match the desired viewpoint by projecting it onto a planar
proxy. The proxy plane for each camera is pre-computed and is included
with the bundle subset data. It is computed by fitting a plane to the set
of points visible in the image using RANSAC. When the viewpoint scoring
function picks a different top image, the old top image begins fading out
using the texture’s alpha value, and the new image starts fading in. In this
way, the transitions between images are smoothed.

Reprojecting an image to a new viewpoint requires a technique called
projective texturing. Because we apply a flat texture to a plane that is
not orthogonal to the user’s viewpoint, if the texture coordinates remain in
the 2D affine plane, the texture will be applied to the surface incorrectly.
Texture coordinates must also be specified in the full 3D projective space
[2]. On the iPhone, it seems that the interpolation of texture pixels to screen
pixels is not performed correctly when not at the vertices, even if the texture
coordinates are correctly specified in projective space. Our solution to this
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is to subdivide the quadrangle we are projecting the texture onto into more
triangles (32 vs. the minimum value of 2), which results in more vertices and
thus better-looking interpolation of the texture. We have not found that this
tessellation results in decreased framerates.

3.4 Area of improvement

The user interface has a flaw in that a translation of the user’s viewpoint
has a greater effect on the apparent change in perspective the closer the
viewpoint is to the scene points. So, a one-finger swipe when the viewpoint
is up close to the scene points moves the viewpoint more than the same
swipe performed when the viewpoint is far away from the scene points. This
results in an inconsistent navigating experience. The cause is the way the
viewpoint is moved: if a multi-touch event triggers one of the movement
direction thresholds, the viewpoint receives an impulse to move in that di-
rection. A continuous one-finger swipe to the left, for example, means that
the viewpoints receives many impulses to move left. The way navigation
should be done, to be completely true to the native iPhone photo browser
UI, is that once a finger touches a point on the image, that point should stay
under the finger throughout the touch event.

4 Server Implementation

Our server architecture relies almost completely on a system developed by
Kathleen Tuite. Her project, PhotoCity, is a capture-the-flag game in which
virtual flags are automatically planted on a map of a small region (such as
a college campus), and are captured by taking and uploading a picture of
that place. The goal of the game is to collaboratively build up photographic
representation of an area. The photographs are organized into bundles of the
same format that our system uses, and our application hooks into her server
system with minimal modifications.

Briefly, the client device sends a query image to the web server, which as-
signs it an id, stores it on the filesystem, extracts SIFT features, and attempts
to register it to the bundle specified by the client. The client, meanwhile,
queries the webserver for the subset for its query image. When the bundle
server finished registering the new image and writes out the selected subset,
the web server returns it to the client.
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Figure 6: An overview of the server.
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The incremental bundle server takes as input a small number of new
images (in our case, just one), quickly estimates their pose, and updates the
bundle. This is how PhotoCity grows its bundles: every image sent with the
intention of capturing a flag increases the size of the bundle. The goal of
the project is a fully connected, well-covered photographic representation of
blocks, neighborhoods, and eventually entire cities.

For client efficiency, each image in the bundle is converted to a PVR
texture ready to be loaded into the client application. Because of the iPhone’s
maximum texture size of 1024x1024, and the additional requirement that
textures must have power-of-two dimensions, we resize and pad each image
before it is converted.

5 Results

Most of the time alloted for this project was spent on implementing the client
application, and the system objective of Display (see Figure 2) was fully met.
The objective of Matching an image to a bundle was not met. The objective
of producing a bundle Subset in a form that is efficiently transferrable and
loadable on the client was mostly met.

5.1 Client

At the beginning of the project, we had significant concerns about the iPhone’s
computing and rendering power, and were cautious about pursuing the goal
of real-time viewpoint scoring and texture reprojection. Because of these
concerns, we at first pursued a different strategy toward achieving virtual
zoom: doing the reprojections on the server, and sending a static stack of
images to display in sequence based on the desired zoom level.

These concerns proved to be unfounded, and we have found that a smooth,
robust photo navigator can run on the iPhone and be interacted with using
a native-feeling user interface. Our client display application runs smoothly
at framerates of over 25 frames per second on the device, with around 15
images loaded. Viewing the video of the application in action, at http:

//vimeo.com/4892120, is highly encouraged.
The biggest issue with the viability of the application is data transfer. The

3G network is offered by the three major cellular phone service providers in
this country, with the average download rate of 1250kbps in one extensive
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Table 1: Data transfer times for different connection rates.

Transfer Task 500 kbps 5000 kbps

200KB image upload 12.8 s 1.28 s
700KB bundle download 11.2 s 1.12 s
500KB single image download 8 s 0.8 s

test [4], and a low number of around 500kbps. We treat 500kbps as the worst
case number, and 5000kbps as the best case number, on a Wi-Fi network.
We assume a bundle size of 700KB, the gzip-compressed size for a bundle of
around 15 images and several thousand points. We consider a corresponding
upload rate as 1/4 of the download rate. The data is in Table 1.

The application spends an additional second reading the bundle data in.
The table demonstrates that the cellphone data rates are a hindrance to using
the application in areas not covered by Wi-Fi. It does not seem acceptable
to us to wait 8 seconds for an image to be displayed. Both 3G speeds and
Wi-Fi coverage should continue to improve, so the worst case scenario should
be getting better with time. The amount of data to transfer could also be
reduced by using streaming. The bundle file would not have to be loaded
all at once, but streamed in, with the immediately needed information first.
Same could be done for images: a low-resolution version could be streamed
first, and then improved. This is what the iSynth client seems to be doing,
at a reasonable rate of performance.

5.2 Server

We have developed an efficient format for representing the subset of a bundle
for use on the client. It includes the camera information for each image, its
best-fit proxy plane, the feature points that are visible for it, location and
color information about these points, and initial viewpoint properties for
the scene. This minimizes the amount of initial processing the client must
perform.

We have developed but not adequately tested an algorithm that picks
the zoom subset, as described in section 2.3. More time could be spent on
making the algorithm more robust and intelligent. For client development
purposes, the bundle subsets were largely hand-picked.
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6 Discussion

We have developed a robust, interactive photo viewer application, and es-
tablished a client-server architecture for it, but there remain many hurdles
to successful field use of the application. Although extensive field testing is
necessary, network data transfer seems to be a major limiting factor. An ac-
cessible Wi-Fi network appears to be a de facto requirement for a responsive
client experience. As discussed in section 5.1, this may not have to be the
case with intelligent use of streaming. Exploring this is probably a necessary
direction toward a consumer-usable product.

We made a design decision in the overall system architecture of statically
selecting a subset of a bundle on the server, and making only that subset
available to the client. An alternative system could consist of a more intimate
client-server connection, in which they remain connected for the duration of
the client’s runtime. In this system, the client would send its query image,
receive information about where it was added to in the bundle, and display
it. Upon the user moving the viewpoint, the server would be updated, select
an image for the new view, and send it over along with data allowing correct
projection. The server should be able to handle multiple client connections
simultaneously, as they are all exploring fundamentally the same bundle.
This system would be more powerful in terms of the amount of data accessible
to the client, and is worth exploring. In our opinion, the network latency
would prevent such an arrangement from being usable; we opted to let the
device do as much of the work as it could, and for that, it needed a static
bundle of its own.

Matching images was not explored in this project. There is ample related
work in matching images to a database, including from and on mobile devices
(see section 1.1). It would be interesting to pair our work with a robust
matching algorithm that ran in real-time. This would allow near real-time
virtual zooming, and is the future vision for this type of project.

It may be useful to be able to zoom in on objects from a picture on a
low-resolution camera, and we focused on this application. But our system
is easily modifiable to provide different sets of views. For example, perhaps
the user would like to orbit around the Statue of Liberty. Our client could
be modified with orbit controls and the server with different subset selection
criteria. Or, the user would like to see historical photos of a building. Our
system could provide that functionality server-side.

Past work such as Photo Tourism and Photosynth has started to create a
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virtual world out of photographs of the real one. Our system can be viewed
as the first step in linking our world to this new virtual world.
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