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PROBLEM

• Detect objects of many classes in an image.
• Trained detectors and classifiers already exist, but there is not enough

time to run all detectors.
APPROACH

• Formulate timeliness evaluation of detection performance vs. time.
• Treat detectors and classifiers as “black boxes”; use reinforcement

learning to find a dynamic policy for deploying them.
RESULTS

• Learn to take actions that do not provide immediate reward.
• Wrapping per-class detectors in our system and setting a deadline

increases the multi-class Average Precision at deadline and before.

1. Motivation

AP VS TIME AND THE REWARD FUNCTION

• The final evaluation is the
normalized area under the AP
vs. Time curve between Ts and
Td.

• Because this is additive per
action, we define
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• � = 0 induces a completely greedy policy; at � = 1 is full lookahead.
• � = 0.4 performs best in cross-validation on the final evaluation.

LEARN ⇡(s) with Monte Carlo policy iteration.
• Gather samples under current ⇡ by running detection episodes on

several thousand images.
• Update policy-defining weights ✓ with L

1

regularization.
• Gradually decrease ✏-greediness of policy.

THE BELIEF STATE posterior over class presences P (C|o) is updated with
observations o.
• Direct method assumes independence between classes, and simply

replaces the posterior of the class(es) corresponding to the action.
• MRF method sets evidence node and runs loopy BP in a

fully-connected MRF model learned with L
1

-regularization.

3. Implementation
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Fig. 2. Detections obtained with a 2 component bicycle model. These examples illustrate the importance of
deformations mixture models. In this model the first component captures sideways views of bicycles while the second
component captures frontal and near frontal views. The sideways component can deform to match a “wheelie”.

the background to find a relatively small number of
potential false positives.

A methodology of data-mining for hard negative ex-
amples was adopted by Dalal and Triggs [10] but goes
back at least to the bootstrapping methods used by [38]
and [35]. Here we analyze data-mining algorithms for
SVM and LSVM training. We prove that data-mining
methods can be made to converge to the optimal model
defined in terms of the entire training set.

Our object models are defined using filters that score
subwindows of a feature pyramid. We have investigated
feature sets similar to HOG [10] and found lower dimen-
sional features which perform as well as the original
ones. By doing principal component analysis on HOG
features the dimensionality of the feature vector can be
significantly reduced with no noticeable loss of informa-
tion. Moreover, by examining the principal eigenvectors
we discover structure that leads to “analytic” versions of
low-dimensional features which are easily interpretable
and can be computed efficiently.

We have also considered some specific problems that
arise in the PASCAL object detection challenge and sim-
ilar datasets. We show how the locations of parts in an
object hypothesis can be used to predict a bounding box
for the object. This is done by training a model specific
predictor using least-squares regression. We also demon-
strate a simple method for aggregating the output of
several object detectors. The basic idea is that objects of

some categories provide evidence for, or against, objects
of other categories in the same image. We exploit this
idea by training a category specific classifier that rescores
every detection of that category using its original score
and the highest scoring detection from each of the other
categories.

2 RELATED WORK
There is a significant body of work on deformable mod-
els of various types for object detection, including several
kinds of deformable template models (e.g. [7], [8], [21],
[43]), and a variety of part-based models (e.g. [2], [6], [9],
[15], [18], [20], [28], [42]).

In the constellation models from [18], [42] parts are
constrained to be in a sparse set of locations determined
by an interest point operator, and their geometric ar-
rangement is captured by a Gaussian distribution. In
contrast, pictorial structure models [15], [20] define a
matching problem where parts have an individual match
cost in a dense set of locations, and their geometric
arrangement is constrained by a set of “springs” connect-
ing pairs of parts. The patchwork of parts model from [2]
is similar, but it explicitly considers how the appearance
model of overlapping parts interact to define a dense
appearance model for images.

Our models are largely based on the pictorial struc-
tures framework from [15], [20]. We use a dense set of
possible positions and scales in an image, and define a
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machine translation and information retrieval. For ex-
ample, until recently speech recognition and machine
translation systems based on n-gram language models
outperformed systems based on grammars and phrase
structure. In our experience maintaining performance
seems to require gradual enrichment of the model.

One reason why simple models can perform better in
practice is that rich models often suffer from difficulties
in training. For object detection, rigid templates and bag-
of-features models can be easily trained using discrimi-
native methods such as support vector machines (SVM).
Richer models are more difficult to train, in particular
because they often make use of latent information.

Consider the problem of training a part-based model
from images labeled only with bounding boxes around
the objects of interest. Since the part locations are not
labeled, they must be treated as latent (hidden) variables
during training. While it is possible that more complete
labeling would support better training, it could also
result in inferior training if the labeling used subop-
timal parts. Automatic part labeling has the potential
to achieve better performance by automatically finding
effective parts. More elaborate labeling is also time con-
suming and expensive.

The Dalal-Triggs detector [10], which won the 2006
PASCAL object detection challenge, used a single filter
on histogram of oriented gradients (HOG) features to
represent an object category. The Dalal-Triggs detector
uses a sliding window approach, where a filter is applied
at all positions and scales of an image. We can think
of the detector as a classifier which takes as input an
image, a position within that image, and a scale. The
classifier determines whether or not there is an instance
of the target category at the given position and scale.
Since the model is a simple filter we can compute a score
as � · �(x) where � is the filter, x is an image with a
specified position and scale, and �(x) is a feature vector.
A major innovation of the Dalal-Triggs detector was the
construction of particularly effective features.

Our first innovation involves enriching the Dalal-
Triggs model using a star-structured part-based model
defined by a “root” filter (analogous to the Dalal-Triggs
filter) plus a collection of part filters and associated
deformation models. The score of one of our star models
at a particular position and scale within an image is the
score of the root filter at the given location plus the
sum over parts of the maximum, over placements of
that part, of the part filter score on its location minus
a deformation cost measuring the deviation of the part
from its ideal location. Both root and part filter scores
are defined by the dot product between a filter (a set
of weights) and a subwindow of a feature pyramid
computed from the input image. Figure 1 shows a star
model for the person category. One interesting aspect
of our models is that the features for the part filters are
computed at twice the spatial resolution of the root filter.

To train models using partially labeled data we use a
latent variable formulation of MI-SVM [3] that we call

(a) (b) (c)

Fig. 1. Detections obtained with a single component
person model. The model is defined by a coarse root filter
(a), several higher resolution part filters (b) and a spatial
model for the location of each part relative to the root
(c). The filters specify weights for histogram of oriented
gradients features. Their visualization show the positive
weights at different orientations. The visualization of the
spatial models reflects the “cost” of placing the center of
a part at different locations relative to the root.

latent SVM (LSVM). In a latent SVM each example x is
scored by a function of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent
values, and �(x, z) is a feature vector. In the case of one
of our star models � is the concatenation of the root
filter, the part filters, and deformation cost weights, z is
a specification of the object configuration, and �(x, z) is
a concatenation of subwindows from a feature pyramid
and part deformation features.

We note that (1) can handle very general forms of
latent information. For example, z could specify a deriva-
tion under a rich visual grammar.

Our second class of models represents each object
category by a mixture of star models. The score of one
of our mixture models at a given position and scale
is the maximum over components, of the score of that
component model at the given location. In this case the
latent information, z, specifies a component label and
a configuration for that component. Figure 2 shows a
mixture model for the bicycle category.

To obtain high performance using discriminative train-
ing it is often important to use large training sets. In the
case of object detection the training problem is highly un-
balanced because there is vastly more background than
objects. This motivates a process of searching through
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• Action a 2 A can run detector of object class k on whole image, or classify the scene.
• The selected action returns observations o: a list of detections, or an evaluated feature.
• Define the policy as taking the untaken action with maximum value, linearly approximated:

⇡(s) = argmax

a2A\O
Q(s, a) = ✓>

⇡ �(s, a)

• Learn an accurate approximation to the expected rewards to the end of the episode:

Q⇡
(sj, aj) = E[R | sj, aj, ⇡]

where R =

PJ
i=j �

i�jR(si, ai) and J is the index of the last action before deadline time Td.

2. Sequential Multi-class Detection

The featurization of the belief state and considered action �(s, a) reflects
• current probabilities of presence for all classes, and associated entropies;
• current time to Ts and to Td, and the expected time of the action.
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Reinforcement Learning

Learning with a higher � results in policies reliant on the global scene feature.

4. Feature Representation and Policy Weights

We evaluated on the PASCAL VOC 2007 detection task, using
• 20 Deformable Part Model detectors (one per class)
• a scene context action based on the GIST feature.

PERFORMANCE VS. TIME
Our method is compared to a
random, optimal static, and oracle
orderings, evaluated at different
settings of start and deadline times.

Bounds Random Fixed Order RL RL w/ GIST Oracle
(0,20) 0.250 0.342 0.378 0.382 0.488
(0,10) 0.119 0.240 0.266 0.267 0.464
(5,15) 0.257 0.362 0.418 0.420 0.530

Areas under the AP vs. Time curve.

POLICY TRAJECTORIES

Action selection traces are plotted over many episodes; the size of the
circles correspond to the increase in AP obtained by the action. Our
policy selects actions dynamically to maximize the rewards obtained
early on.

5. Evaluation

If execution is stopped with only half of the detectors deployed, we
obtain at least 66% better AP than a random ordering, and 14% better than
an intelligent baseline. On the timeliness measure, we obtain at least 11%
better performance.

Our method is easily extensible.
Code is available at http://sergeykarayev.com/work/timely/.

NEXT STEPS

• Define actions on regions of the image.
• Account for feature computation cost with multiple detector types.

6. Conclusion


