Timely Object Recognition

Sergey Karayev¹, Tobias Baumgartner², Mario Fritz³, Trevor Darrell¹

¹UC Berkeley, ²RWTH Aachen, ³MPI Informatics

We evaluated on the PASCAL VOC 2007 detection task, using
• 20 Deformable Part Model detectors (one per class)
• a scene context action based on the GIST feature.

Performance vs. Time

Our method is compared to a random, optimal static, and oracle orderings, evaluated at different settings of start and deadline times.

Policy Trajectories

Action selection traces are plotted over many episodes; the size of the circles correspond to the increase in AP obtained by the action. Our policy selects actions dynamically to maximize the rewards obtained early on.

5. Evaluation

66% better AP than a random ordering, and 11% better than an intelligent baseline. On the timeliness measure, we obtain at least 11% better performance.

Our method is easily extensible.

Next Steps

• Define actions on regions of the image.

• Account for feature computation cost with multiple detector types.

1. Motivation

• Detect objects of many classes in an image.

• Trained detectors and classifiers already exist, but there is not enough time to run all detectors.

Problem

Approach

• Formulate timeliness evaluation of detection performance vs. time.

• Treat detectors and classifiers as “black boxes”; use reinforcement learning to find a dynamic policy for deploying them.

Results

• Learn to take actions that do not provide immediate reward.

• Wrapping per-class detectors in our system and setting a deadline increases the multi-class Average Precision at deadline and before.

2. Sequential Multi-class Detection

• Action \(a \in A \) can run detector of object class \(k \) on whole image, or classify the scene.

• The selected action returns observations \(o \): a list of detections, or an evaluated feature.

• Define the policy as taking the unacted upon action with maximum value, linearly approximated:

\[
\pi(s) = \arg \max_{a \in A} Q(s, a) = \theta^T_\pi(s, a)
\]

• Learn an accurate approximation to the expected rewards to the end of the episode:

\[
Q(s, a) = R(s, a) + \gamma \sum_{t'} \mathbb{E}[Q(s', a')]
\]

where \(R = \sum_{t=0}^{T-1} \gamma^t R(s', a') \) and \(T \) is the index of the last action before deadline time \(T_D \).

3. Implementation

• The final evaluation is the normalized area under the AP vs. Time curve between \(T_s \) and \(T_D \).

• Because this is additive per action, we define

\[
R(s, a) = \Delta \text{AP} \left(\frac{T_D - T_s}{T_D - T_s} \right)
\]

• Action \(a \in A \) can run detector of object class \(k \) on whole image, or classify the scene.

• The selected action returns observations \(o \): a list of detections, or an evaluated feature.

• Define the policy as taking the unacted upon action with maximum value, linearly approximated:

\[
\pi(s) = \arg \max_{a \in A} Q(s, a) = \theta^T_\pi(s, a)
\]

• Learn an accurate approximation to the expected rewards to the end of the episode:

\[
Q(s, a) = R(s, a) + \gamma \sum_{t'} \mathbb{E}[Q(s', a')]
\]

where \(R = \sum_{t=0}^{T-1} \gamma^t R(s', a') \) and \(T \) is the index of the last action before deadline time \(T_D \).

Reward Discount

• \(\gamma = 0 \) induces a completely greedy policy; at \(\gamma = 1 \) is full lookahead.

• \(\gamma = 0.1 \) performs best in cross-validation on the final evaluation.

Learn \(\pi(s) \) with Monte Carlo policy iteration.

• Gather samples under current \(\pi \) by running detection episodes on several thousand images.

• Update policy-defining weights \(\theta \) with \(L_2 \) regularization.

• Gradually decrease \(\epsilon \)-greediness of policy.

The Belief State posterior over class presences \(P(C|o) \) is updated with observations \(o \).

• Direct method assumes independence between classes, and simply replaces the posterior of the class(es) corresponding to the action.

• MRF method sets evidence node and runs loopy BP in a fully-connected MRF model learned with \(L_1 \)-regularization.

4. Feature Representation and Policy Weights

The featureization of the belief state and considered action \(\phi(s, a) \) reflects

• current probabilities of presence for all classes, and associated entropies;

• current time to \(T_s \) and to \(T_D \), and the expected time of the action.

6. Conclusion

If execution is stopped with only half of the detectors deployed, we obtain at least 66% better AP than a random ordering, and 11% better than an intelligent baseline. On the timeliness measure, we obtain at least 11% better performance.

Our method is easily extensible.

Next Steps

• Define actions on regions of the image.

• Account for feature computation cost with multiple detector types.

AP vs Time and the Reward Function

The timeliness evaluation is the normalized area under the AP vs. Time curve between \(T_s \) and \(T_D \).

• Because this is additive per action, we define

\[
R(s, a) = \Delta \text{AP} \left(\frac{T_D - T_s}{T_D - T_s} \right)
\]

Reward Discount

• \(\gamma = 0 \) induces a completely greedy policy; at \(\gamma = 1 \) is full lookahead.

• \(\gamma = 0.1 \) performs best in cross-validation on the final evaluation.

Learn \(\pi(s) \) with Monte Carlo policy iteration.

• Gather samples under current \(\pi \) by running detection episodes on several thousand images.

• Update policy-defining weights \(\theta \) with \(L_2 \) regularization.

• Gradually decrease \(\epsilon \)-greediness of policy.

The Belief State posterior over class presences \(P(C|o) \) is updated with observations \(o \).

• Direct method assumes independence between classes, and simply replaces the posterior of the class(es) corresponding to the action.

• MRF method sets evidence node and runs loopy BP in a fully-connected MRF model learned with \(L_1 \)-regularization.

4. Feature Representation and Policy Weights

The featureization of the belief state and considered action \(\phi(s, a) \) reflects

• current probabilities of presence for all classes, and associated entropies;

• current time to \(T_s \) and to \(T_D \), and the expected time of the action.

6. Conclusion

If execution is stopped with only half of the detectors deployed, we obtain at least 66% better AP than a random ordering, and 11% better than an intelligent baseline. On the timeliness measure, we obtain at least 11% better performance.

Our method is easily extensible.

Next Steps

• Define actions on regions of the image.

• Account for feature computation cost with multiple detector types.