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1. Method

The test-time e�cient classification problem

consists of

• N instances labeled with one of K labels:

D = {x

n

2 X , y

n

2 Y = {1, . . . , K}}N

n=1.

• F features H = {h

f

: X 7! Rd

f }F

f=1, with associ-

ated costs c

f

.

• Budget-sensitive loss LB, composed of cost budget

B and loss function `(ŷ, y) 7! R.

The goal is to find a feature selection policy ⇡(x) :
X 7! 2H

and a feature combination classifier

g(H
⇡

) : 2H 7! Y such that such that the total budget-

sensitive loss

PLB(g(⇡(x
n

)), y
n

) is minimized.

The cost of a selected feature subset H
⇡(x) is CH

⇡

(x).
The budget-sensitive loss LB presents a hard bud-

get constraint by only accepting answers with CH 
B. Additionally, LB can be cost-sensitive: answers
given with less cost are more valuable than costlier
answers. The motivation for the latter property is
Anytime performance; we should be able to stop our
algorithm’s execution at any time and have the best
possible answer

1.1. Feature selection as an MDP.

The feature selection MDP consists of the tuple

(S, A, T (·), R(·), �):

• State s 2 S stores the selected feature subset

H
⇡(x) and their values and total cost CH

⇡(x)
.

• The set of actions A is the set of features H.

• The (stochastic) state transition distribution

T (s0 | s, a) can depend on the instance x.

• The reward function R(s, a, s

0) 7! R is manually

specified, and depends on the classifier g and the

instance x.

• The discount � determines amount of lookahead

in selecting actions.

Reward definition is given in Figure 1.
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Figure 1. Definition of the reward function. We seek to
maximize the total area above the entropy vs. cost curve
from 0 to B, and so define the reward of an individual
action as the area of the slice of the total area that it
contributes. From state s, action h leads to state s0 with
cost cf . The information gain of the action a = hf is
IH

s

(Y ;hf ) = H(Y ;Hs)�H(Y ;Hs [ hf ).
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Figure 2. Illustration of the state space. The feature se-
lection policy ⇡ induces a distribution over feature subsets,
for a dataset, which is represented by the shading of the
larger boxes. Not all states are reachable for a given budget
B. We show three such “budget cuts.”

1.2. Learning the policy.

We learn the state feature weight vector ✓ by policy

iteration. First, we gather (s, a, r, s

0) samples by run-
ning episodes with the current policy parameters ✓

i

.
From these samples, Q̂(s, a) values are computed, and
✓

i+1 are given by L2-regularized least squares solution
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to Q̂(s, a) = ✓

T

�(s, a), on all states that we have seen
in training. During training, we gather samples start-
ing from either a random feasible state, with decaying
probability ✏, or from the initial empty state otherwise.

1.3. Learning the classifier.

A Gaussian Naive Bayes classifier can combine an
arbitrary feature subset H

⇡

, but su↵ers from its re-
strictive generative model. We found logistic regres-

sion to work better, but because it always uses the
same length feature vector, unobserved feature values
need to be imputed. We evaluate mean and Gaus-

sian imputation.

Since the classifier depends on the distribution over
states (see Figure 2) induced by the policy, and the
policy training depends on the entropy of the classifier,
the learning procedure is iterative, alternating between
learning policy and classifier.

Note that the policy ⇡ selects some feature subsets
more frequently than others. Instead of learning only
one classifier g that must be robust to all observed
feature subsets, we can learn several classifiers—for
each of the most frequent subsets—and match test
instances to classifier accordingly.

2. Evaluation

We evaluate the following baselines:

• Static, greedy: corresponds to best performance
of a policy that does not observe feature values
and selects actions greedily (� = 0).

• Static, non-myopic: policy that does not ob-
serve values but considers future action rewards
(� = 1).

• Dynamic, greedy: policy that observes feature
values, but selects actions greedily.

Our method is the Dynamic, non-myopic policy:
feature values are observed, with full lookahead.
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Figure 3. Evaluation on the 3-dimensional synthetic ex-
ample (best viewed in color). The data is shown at top
left; the sample feature trajectories of four di↵erent poli-
cies at top right. The plots in the bottom half show that
we recover the known optimal policy.
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Figure 4. Results on Scenes-15 dataset (best viewed in
color). 14 visual features variy in cost from 0.3 to 8 sec-
onds, and in accuracy from 0.32 to .82. Our results on this
dataset match the reported results of Active Classification
(Gao & Koller, 2011) and exceed the reported results of
Greedy Miser (Xu et al., 2012).

Figure 5. Results on the Imagenet 65-class subset. Note
that when our method is combined with Hedging Your Bets
(Deng et al., 2012), a constant accuracy can be achieved,
with specificity of predictions increasing with the budget,
as in human visual perception. (Color saturation corre-
sponds to percentage of predictions at node.)


