Anytime Recognition of
Objects and Scenes

Sergey Karayev Mario Fritz ~ Trevor Darrell
"3 UC Berkeley MPI for Informatics UC Berkeley

CVPR 2014

Human perception is anytime & progressive

| saw o brght object, shaped in d Possibly outdoors. maybe a few ducks, It was definately on a coast byt hte
PT pyrarrpdal shape. There was s?methln PT or geese. Water in the background. PT ocean with a large [rJock in the
i e assimmneiont; Buidicotlidhitel (Subject: JL) 500 ms forground and atleast three bird sitting
what it was. (Subject: JB) 67 ms on the rock. (Subject: CC)
—
Time

Fei-Fei, Iyer, Koch, and Perona, “What do we perceive in a glance of a real-world scene?,” J. Vis., Jan. 2007.

It is a well-known fact that human perception is both anytime, meaning that a scene can be described after even a short presentation, and progressive, meaning that the quality of description

increases with more time.
For example, in one well-known study, the stimulus shown was described as just “a very bright object” after 40 ms, as “possibly outdoors” after 60 ms, and as “definitely on the coast, with at least three

birds” after 500 ms.

Human perception is anytime, progressive

14 4 8 - Animal
6
12 100 -
4
10 80 -
2
60 -
8
0
200 400 600 40
6
20 -
4 0 v ! v v .
200 300 400 500 600 700
2

| saw a very br{

PT pyramidal shaj /,L = kin the

past byt hte

black in the frg 0 T
A0 mMS hatitwas. (SH 100 200 300 400 500 600 700 800 :)ree Ll

Time
—

, Macé, Joubert, Nespoulous, and Fabre-Thorpe, “The time-course of visual categorizations:
Time you spot the animal faster than the bird.,” PLoS One, Jan. 2009.

Fei-Fei, Iyer, Koch, and Perona, “What do we perceive in a glance of a real-world scene?,” J. Vis., Jan. 2007.

There is also evidence that the progressive enhancement of description occurs in an ontologically meaningful way, as for example, when we recognize something as an animal before recognizing it as a
dog.

We deal with varied inputs, classes, and recognition actions
IM&GENET

feline

v 5 ‘\:

o P P : » > ; .:\ J!v;;k o -

: -
W 0 T

) PN
."t‘&*il“ b

-
4
M
-
-
—
-
—

R MM ur A TmEN AN o iEm= L aFEN AR TN

PR AL AL UGN ST R

s MOPASIENOLAICN T "Caa S "I WAL re ™Y
- m = EINS e P ™ N e T d S " P an ™ -
| PRAEITNAFINITCRCES PN ILSERPNAT

: e et T bl L T T

‘Y avae RENSNNIPACUPIORSMANEN"P LY IV s

FH e ! 2l e s T Ty L It

*- \ ponn| o6 | T P L L Pl e b LT e
)

\ s Ry N wm B um PN LONC DN O

Do) Righe ©« % eI RS CNPEATN A4S LYY
H [Lot | Tl o S CEF AR RTINS N e N
L1 it 200 24 B FUSACECNRE BEE L IRE T LA
, BEEH
R

s din R T R TR U L L et
CNPEF eI e/ AN AN AT ™A™
Hamlili ™R PduIC"eE NI " FaNeC

.

B T T T P T R et
e P Al A T L LI P s A FLIT L I Y
' ; - L T T =T T e T A 2 L T T o

(a) . SUL T FFEE L RE N DL el

In computer vision, we deal with a variety of inputs, ranging from simple frames to highly complex scenes; a large number of classes, which may be ontologically organized; and many possible
recognition actions.

Crucially, these recognition actions have different computational costs and provide different benefits.

Motivation: time-sensitive applications

N

A'-V -
g el) ¢3
- PO P s AL, T T L

Goal is to provide the best performance, given any budget.

-ven when itis flexible or unknown.
L)

Hourly picture posting distribution EST Q‘ TrackMaven

C i C

We are faced with a multitude of time-sensitive applications.
Driver assistance or replacement clearly has real-time needs, while large server farms can crank away with little time pressure.

In between are robotic applications, which need to respond to input in a time-sensitive way, and flexible deployments, where the quality of recognition may depend on the length of the job queue.
In settings like these, we may not be able to compute all possible features or recognize all classes.

To provide the best performance given any budget, we would like our recognition actions to depend on the input.

Setup: classifier

P1
f P2 — R or R®
P3

P4

o General combination of features.

o |04 |ismoreexpensivethan |@q

Let's begin with a general classifier, which computes features of different costs, and combines them with learned weights to output a classification score.

Setup: static feature selection

0 |¢1
0 |p2 K
Mo gy | TREE

Ba (P4

e Select bestfeatures for data source and average budget.
e INnsufficient for Anytime performance.

o Static selection is not robust to image variety.

Faced with a specific data source and some knowledge of the budget, we can select the best features to compute.
However, this is not sufficient for Anytime performance, when the budget may not be precisely known, and there may not be enough time to compute all features.

Setup: cascades

P1 P1 P1 P1
o > 2 . > ol | . > b2 >R or RF
P3 P3 P3 P3

P4 P4 P4 P4

v v v
—1 —1 —1
e WO actions: Reject and Continue.

e Anytime performance is limited.

o Fixed orderis notrobustto image variety.

The Cascade is the classical idea of evaluating features in sequence, as merited by the image.

In addition to the feature computation actions, the classifier is augmented with a rejection action.

The cascade is Anytime in a limited way, as only the rejection answer can be given before all features are evaluated.
Furthermore, the fixed order of the cascade is not robust to the fact that different images benefit from different features.

Our method

r \ r \
|2 @2 |03 | Qg || -mmmme-e-- > | 01 @2 (@3 | P2 | |*
© L VAR '7' N J N
- N o .. s \‘ s N
¢1 "'t :“,s \“ ¢1
.)t ‘e ¥y
¢2 4) , s\s 4) ¢2
-------- > | |@1] |92] P3| |P4 . S e
¢3 . \ y ‘\“ ,"' \ y ;‘ ¢3
¢4 ‘\“ '/‘(\‘ ," ¢4
- J . '&' *) \. J

| “(EEEE] o Eaeee) |

! l

RE R

e Features are selected for computation in a flexible order.
e Wefind a dynamic, non-myopic policy for state traversal using reinforcement learning.

o Classification answer can be given at any pointin the computation.

Our work considers not a chain but a general DAG over selected-feature subsets, which allows actions to be taken in an entirely flexible order.
Given a data source and a range of budgets, we use reinforcement learning to find a policy for navigating this graph.

The policy is dynamic (meaning that it incorporates feedback) and non-myopic (meaning that it plans ahead),

This makes it robust to the fact that different images benefit from different features.

We are also able to give the classification answer from all states, making our work truly Anytime.

Our method

P2
3
P4

e We model the problem of state traversal as a Markov Decision Process.

This is how it works.
We model the problem as a Markov Decision Process, with the state consisting of the computed feature values.

Our method

1
P2
3
P4

v

P4

e We model the problem of state traversal as a Markov Decision Process.

e Foreverystate, we learn to select action of maximum expected value.

From each state, we learn to select the action of maximum expected value, where expected value depends on how we define the Reward function -- this will be explained later.

Our method

i 01) i P1)
P2 P2
®3 ®3
G4 \ on /
P4

e We model the problem of state traversal as a Markov Decision Process.
e Foreverystate, we learn to select action of maximum expected value.

o Stateis updated with the result of the selected action.

Upon taking an action and computing a feature, the state is updated with the result.

Our method

i ®1) i ¢1)
P2 P2
®3 ¢3

G4 \ on J
P4 ¢3

e We model the problem of state traversal as a Markov Decision Process.
e Foreverystate, we learn to select action of maximum expected value.

o Stateis updated with the result of the selected action.

This process repeats until either all features are computed, or we have exhausted our budget.

Our method

f¢1) f¢1) f¢1)
P2 P2 O2
P3 D3 ¢3
G4 \ P4 J \ P4 |
P4 ¢3 P2

e We model the problem of state traversal as a Markov Decision Process.
e Foreverystate, we learn to select action of maximum expected value.

o Stateis updated with the result of the selected action.

Our method

i b1 P1 P1 b1
¢2 ¢2 ¢2 gbg
Cbs ¢3 ¢3 ¢3
D4 on P4 D4

P4 ¢3 P

e We model the problem of state traversal as a Markov Decision Process.
e Foreverystate, we learn to select action of maximum expected value.

o Stateis updated with the result of the selected action.

Our method

R* RA RE RK
Ch Gh R B
¢2 ¢2 ¢2 ¢2
P3 @3 Ps3 ¢3
. ¢4 Y, _ ¢4 y L ¢4) ¢4
P4 ¢3 P

e We model the problem of state traversal as a Markov Decision Process.
e Foreverystate, we learn to select action of maximum expected value.
o Stateis updated with the result of the selected action.

o We train classifier on subsets of features, to give answer at any time.

We train a classifier on all subsets of features encountered in running the policy; this allows us to give Anytime answers.

Our method

B GB IR o
P2 P2 P2
®3 P3 ¢3
\¢4 Y, \¢4) §b4
\ / }
Ps_; 2

e We model the problem of state traversal as a Markov Decision Process.
e Foreverystate, we learn to select action of maximum expected value.
o Stateis updated with the result of the selected action.

o We train classifier on subsets of features, to give answer at any time.

Now all the components are in place.
So how do we learn to select actions?

Learning the value function

1
P2
3
P4

G2| |93 | |P4

e Action selection is done by the policy function: m(s) = arg max Q(s,a)

Our goal is to learn a policy function that will follow a simple rule: for each state, pick the action that maximizes the *value function®*.
If we can learn the value function, we have our policy.

Learning the value function
RK

1

P2

3

P4

1

-

v

P4

e Action selection is done by the policy function: m(s) = arg max Q(s,a)

o (Q(s,a) givesthe expected sum of rewards to the end of the episode.

The Q-value function gives the expected sum of rewards of taking the action in the state, then following the policy to the end of the episode.
The reward is a function of the state, and has to be manually defined -- | will explain how we define it in a few slides.

1

P2

3

~N

P4

\4

3

R(s") —+

a

1

P2

3

P4]

’)/QR(S/N)

Learning the value function

K K

RA : X

T | T
(gbl ((bl R(s") + o1 R(s") + &1 2 /1
P2 O2 () 0D ! () bo Y R(S)
@3 D3 @3 @3
o \¢4 | P4 J o J
P4 P3 P2

e Action selection is done by the policy function: m(s) = arg max Q(s,a)

o (Q(s,a) givesthe expected sum of rewards to the end of the episode.

e Parameter v controls the amount of lookahead.

Note that the discount parameter gamma controls how much future rewards contribute to the value of taking an action now.
With gamma equal to 0, only the next step reward is considered.

With gamma equal to 1, future rewards are weighed equally to next-step rewards.

This can vary a policy from greedy to non-myopic.

Learning the value function

K K

RA : X

T | T
[¢1 (451) R(s") -- 1 R(s") + Q1 2 /17
P2 O2 () 0D K () bo Y R(S)
@3 ¢3 / Ps3 ¢3
o \¢4 | P4 J o J
¢4 ¢3 &Q‘I

e Action selection is done by the policy function: m(s) = arg max Q(s,a)
o (Q(s,a) givesthe expected sum of rewards to the end of the episode.

e Parameter v controls the amount of lookahead.

The Q-value function may be written recursively, as simply the next-step reward plus the discounted value of following the policy from that state.

Learning the value function

RK
4 T)
Z A | R() + Q7 (s ()
P2 P2
®3 ®3
G4 \¢4 J
b4 follow policy

e Action selection is done by the policy function: m(s) = arg max Q(s,a)

o (Q(s,a) givesthe expected sum of rewards to the end of the episode.

e Parameter v controls the amount of lookahead.

o Q7(s,a) =Ey [R(s") + Q" (5", 7(s"))]

The Q-value function may be written recursively, as simply the next-step reward plus the discounted value of following the policy from that state.

Learning the value function

o Wesample Q7 (s,a) = Ey [R(s") +vQ7 (s, 7(s"))]
by running the policy.

e Due toinfinite number of states, we learn an approximation:

QW(Sv CL) — 9T¢(37 CL)

e State-action pairs are featurized with relevant values:

O
o(|5—=)

3

4

action taken feature values cost info

The Q-function is an expectation, and can be sampled by running the policy many times.
Because there is an infinite number of states, we cannot tabulate the Q-function.

Instead, we learn a linear approximation of it, for which we need a featurization of the state-action pair.
We featurize the state-action with the actions that have been taken, feature values that have been observed, and information about the action cost and remaining budget.

Learning the value function

o Wesample Q" (s,a) = Ey [R(s') + Q7 (s, m(s")] = 67 (s, a)
by running the policy over many images.

state action reward

¢1

O(|% =) R(s)
%

—@) R(s")

%@)
<] =

—a) R(")

To learn the approximation, we generate many recognition episodes by following a policy."
Here, we illustrate just one episode, but there are many.

Running the policy, we gather state-action-reward tuples, and featurize state-action pairs.
At the end of the episode, we know not only the reward for each tuple, but the sampled Q-function values, obtained by adding up rewards.

Learning the value function

o Wesample Q" (s,a) = Ey [R(s') + Q" (', m(s")] = 67 (s, a)
by running the policy over many images.

e Minimize prediction error of 6.

¢(s,ay) Q(s,ay) ¢(.Sicf4)

O(s,a4) Q(s', as3)

b(s,a1) Q(s", an)

other episodes

\— —/

We gather a large training set by running episodes on many images, and update the linear approximation of the Q-value function, theta, by minimizing its prediction error.

Q(S,CM)

Training algorithm

mo < random:;

for : <+ 1 to max_iterations do

States, Actions, Costs, Labels < GatherSamples (D, m;_1);
Values < ComputeValues (States, Costs, Labels, g;, L,)
m; < UpdatePolicy(States, Actions, Values);

end

The overall training algorithm is therefore as follows:

- First, initialize policy randomly

- Gather samples by running recognition episodes with current policy.

- Compute the sampled values for every state-action tuple gathered.

- Update the Q-value function, which updates the policy.

We repeat the above until the values converge, or we're out of iterations. This is a variant of reinforcement learning algorithm called Q-iteration.

Reward definition

RK
4 T)
7 8| [R(s) + Q™ (s))
P2 | P2
@3 | [
] =
! v
P4 follow policy

e Still one piece missing: what is the reward?

There's still one piece missing in the story: how shall we define the reward function?

Reward definition

0.8f |
0.6/ A B S R
o S

02 I N

0.0

0 2 4 6 8
Cumulative cost

The goal of the Anytime classifier is to predict as correctly as possible, as cheaply as possible.

Reward definition

0.8 . .
0.6/ S e S
o S

02 R N

0.0

Cumulative cost

This corresponds to maximizing the area above the Error vs. Cost curve.

Reward definition

Cumulative cost

Each action contributes a horizontal "slice" of this area, and that is the intuition behind how we define its reward.

Reward definition

1.0

0.8

0.6

0.4

0.2

0.0

v

s&o:ooooooo:ooooooo:ooooooo:ooooooo

~o‘ ¢) ¢) ¢)) o) O o: @) @) ¢) o) O) o: ¢) ¢ o)) @) @) o: O O @) O @) @) O

: \o O O O O o 0 O o} O O O o 0 o) o} O O O O 'O O O ¢} O O o}

)

v) o) O o: @) @) @) o) @)) o: ¢) @) o) @) @) @) o:) o) O @) @) @) @)

\

Qoo:ooooooo:ooooooo:ooooooo

\

& e} O O O O @) O o' o o) o} @) O O o' O O o) o) e} O O
---------------------- : '""""'""""'S'O"'O"'O'"O"'O"'O"'O"E'O"'O"'O"'O"'O"'O'"O"E‘O"'O"'O"'O"'O"'O"'O"
: ~o O O O O oE o) o) ¢} @) O O oE O o o) e) O O O
w O O O Eo o) @) O O O O Eo o) O e) O O @)
)

Qoo:ooooooo:ooooooo

O O O @) O O O :O O O O @) O O

..
y
Ny
y '
y
‘.
y
. ny
..
Ny
Ny

0 9 A 6 3 10

Cumulative cost

Essentially, the larger the slice, the larger the reward.

Reward definition

1.0

0.8

0.6

0.2

0.0

6
Cumulative cost

Reward definition

0.6
Iy, (Yihy)

0.4

0.2

0.0
0

\ 2 4 pe 3 10
C

umulative cost

Bs

We found that it made for a more stable reward function to use the empirical entropy of the prediction rather than the error.
Reward then corresponds to a function of the empirical information gain.

Training classifier

RK

T

RK

T

¢1

P2

3

P4

o]
53
b3
6]

o We use logistic regression.

|

1
P2
3
P4

T

5]
b2
b3
6]

o Classitier must be robust to range of possible feature subsets.

o Different missing-value imputation methods.

o Mixture of classifiers.

We see that the reward function depends on the performance of the classifier. How does that work?

First of all, because our method is all about conserving computation, we only consider linear classifiers.

The classifier must be robust to a range of possible feature subsets.

(&

92
3
P4

= \e

=)

/o

— [0

1| (@2 |03
1] [2 |¢3 P4 j
1| [02] |93 | |#4]

We consider several missing value imputation methods, and [click] use a mixture of classifiers so as to cover different feature subsets.

We find that simple mean imputation and single components generally work best.

>><<fl

Az

| (2] 103 | lo4 j
\%7
Clealz] jj
®4
—_/
G EE]

Final training algorithm

mo < random:;

for : < 1 to maz_iterations do

States, Actions, Costs, Labels < GatherSamples (D, m;_1);
g; < UpdateClassifier (States, Labels):

Values < ComputeValues (States, Costs, Labels, g;, L, V)
m; <— UpdatePolicy(States, Actions, Values):;

end

Since the distribution of feature subsets depends on the policy, our final training algorithm has an added classifier update
step.

Evaluation

Baselines:

e Static, greedy: do not observe feature values, select actions greedily

e Static, non-myopic: do not observe feature values, but use MDP with
v = 1 to plan ahead.

e Dynamic, greedy: observe feature values, but select actions greedily:.

Our method Dynamic, non-myopic: observe feature values, and plan ahead.

Our evaluation works as follows.

Evaluation: Synthetic Example

e\\Ve construct a task where-

‘he optimal policy is known,

and has to be dynamic anc

NON-Myopic.

Evaluation: Synthetic Example

o\We construct a task where the optimal policy is known,

and has to be dynamic and non-myopic.

— Optimal

== Static, greedy

——= Static, non-myopic

== Dynamic, greedy

Dynamic, non-myopic

q7—0ptlmal ----- ---------- @ o Randorfl

Action

Number in action sequence

Evaluation: Synthetic Example

o\We construct a task where the optimal policy is known,
and has to be dynamic and non-myopic.

]

Optimal

Random

== Static, greedy

——= Static, non-myopic

== Dynamic, greedy

Dynamic, non-myopic

Action

Number in action sequence

10 12 14

Evaluation: Synthetic Example

o\We construct a task where the optimal policy is known,
and has to be dynamic and non-myopic.

- Optimal == Static, greedy == Dynamic, greedy

qr —Statl C G reedy ---------- e o Random '—' Static, ﬁon—myopilc Dynamic, NON-Myopic |

Action

Number in action sequence Cost

Evaluation: Synthetic Example

o\We construct a task where the optimal policy is known,
and has to be dynamic and non-myopic.

e Our method successtully recovers it.

- Optimal == Static, greedy == Dynamic, greedy

q7 Dyn a m |C N O N- Myo p | C R IR L Random == Static, non-myopic ‘ Dynamic, non-myopic J)

Action

Number in action sequence

Cost curve

Area under the Error vs.

Anytime recognition of scenes

e Scenes-15 dataset.

e Actions are feature computations.

0.7
m—8 Random

B=-@ Static, greedy
S - - - B—8 Static, non-myopic

5 5 5 m=—@8 Dynamic, greedy |
05F -\~ e s S m—8 Dynamic, non-myopic |-
0.1 i i i i i |

5 10 15 20 25 30

Max Budget

open country

street

Cost curve

Area under the Error vs.

Anytime recognition of scenes

e Scenes-15 dataset.

e Actions are feature computations.

0.7
s—8 Random
B=-@ Static, greedy
00\ --------------------- ---------------------- ----------- ==& Static, non-myopic
5 5 5 m=—@8 Dynamic, greedy |
0.5F -\~ S o SR ==& Dynamic, non-myopic |-

0.1 | |

5 10 15 20 25 30
Max Budget

Action

open country street lbuilding
geo_color — - - - - -- S] .
seotexton ——| Static, Greedy|
geo_map8x8 — - - - - - - -) -
texton — - --- - - TR B R :
SSim — - - - - - - o SRR o |
sparse_sift — - - - - - oo
gistPadding — - - - - -0 - - - - e oo S C |
line_hists — - - - - /- R U Ce Y A L. |
denseSIFT —---/-- o e S e |
Ibphf —- /- -- R R - L |
lbp = /- R RS 4 SR SRR |
tiny_image —/--- - - - R ve o f T L :
hog2x2 B --- - - - TN, e e e .
gist =LA L L. |
0 1 2 3 4 5)

Number in action sequence

Cost curve

Area under the Error vs.

Anytime recognition of scenes

e Scenes-15 dataset.

e Actions are feature computations.

0.7

0.6

0.5

Random

Static, greedy
Static, non-myopic
Dynamic, greedy

Dynamic, non-myopic |-

15
Max Budget

20

25

30

Action

Action

open country street lding
geo_color — B . -
seotexton — | Static, Greedy|
geo_map8x8 — - - - - - - TR .
texton — - --- - - TR B R :
SSITIL — - - - - = ot e e e

sparse_sift —
gistPadding —

.............................

..................................

line_hists — - - - - /- R U Ce Y A L. |
denseSIFT —---/-- o e S Ce |
lbphf — - /- -- e\ - - R T L |
lbp — /- - X\t R
tiny_image —/- - --- - - N v A e
hog2x2 P -----=----- N+ f--- e
gist =LA L L. |
0 1 2 3 4 5
Number in action sequence

geo_color — - ------- EE)]

geo_texton — - ------- R —
_geotexton — :__Dyn mic, Non-Myopic

texton — - ------- SRR P |
ssSlm — - - - - - - o/ B SN
sparsesift —------------ L@ o W/ - X
gistPadding — - - ---- - - ARy S Ay - 7 X
line_hists —-------- SERRPY s BKALT- LA - /NG ;
denseSIFT —-------- e O e |
Ibphf — - - o A e
lbp —--- -~ e 7 SRR R I
tiny_image — - =" - /S & @
hog2x2 P - -~
gt Ll A |
0 1 2 3 4

Number in action sequence

Human perception is anytime, progressive

14

12

10

| saw a very br{
PT pyramidal shaj

black in the frg 0
what it was. (S|

40 ms

200

- Animal
- Dog

100

80 -

60 -

400 600 40 1

20 -

300

100 200 300 400 500 600 700
Time

Time you spot the animal faster than the bird.,” PLoS One, Jan. 2009.

400

500 600 700

Macé, Joubert, Nespoulous, and Fabre-Thorpe, “The time-course of visual categorizations:

past byt hte
kin the
nree bird sitting

)
—_—

Fei-Fei, Iyer, Koch, and Perona, “What do we perceive in a glance of a real-world scene?,” J. Vis., Jan. 2007.

Recall our initial motivation of progressively specific visual perception.

Anytime recognition of objects

feline

dog

72 T~

oy -

Cvall P~
e\
LA LA

\

vehicle " "

IMJ£GE

(a)Semantic hierarchy (b)Accuracy of prediction (c)Reward of prediction

dog bird car boat AN ground truth Nground truth

animal vehicle

J. Deng, J. Krause, A. C. Berg, and L. Fei-fei, “Hedging Your Bets:
Optimizing Accuracy-Specificity Trade-offs in Large Scale Visual
Recognition,” in CVPR, 2012.

The ImageNet dataset provides a full hierarchy of classes, and lets us leverage prior work in trading off accuracy and specificity.

Anytime recognition of objects

e Actions are class evaluations.

1’00_ ________________ _____________________ ______________________ r _____________________ L
: : : B=—8 Random |

© | ; ; B—-m Static, greedy
P : : :
% 099 N S AR A B—@ Static, non-myopic
= B—8 [ynamic, greedy
3 . . .
O 5 5 5 B8 [ynamic, non-myopic
;090 FERRRRED. N CLLRRLEREIERREERRRE SRRPERELEE > . P
> E 5
o ,
& s s : s s s
O 0-85 """""""" """"""""""" """""""""""
ﬁ : : 8 : :
3
2
so08F 0 N N
i
=
<: : : : :

0.70F - RRTREMEME ALRTIEIEITR R S EREMIRNS N

10 20 30 40 50
Max Budget

The actions on this task are class evaluations.
Our dynamic, non-myopic method also outperforms the baselines on this task.

Anytime recognition of objects with increasing specificity

o8 - e o
e S — S R—
S | | m—m Accuracy (target 0.9)
L | | @@ Specificity at target accuracy |
o4l R A — — E— z

Cost: 17 Cost: 26

Conclusions

eMethod for dynamic, non-myopic selection of recognition actions
for Anytime performance.

eFormulation accommodates many types of recognition actions.
e Avenue for further study of time-course of perception.

e Code and more details available at
http://sergeykarayev.com/recognition-on-a-budget/

http://sergeykarayev.com/recognition-on-a-budget/
http://sergeykarayev.com/recognition-on-a-budget/

