
Anytime Recognition of
Objects and Scenes

Sergey Karayev Mario Fritz Trevor Darrell
 UC Berkeley MPI for Informatics UC Berkeley

CVPR 2014

Logo courtesy of Jon Barron.
We present work on Anytime Recognition of Objects and Scenes.

Human perception is anytime & progressive

Time

Fei-Fei, Iyer, Koch, and Perona, “What do we perceive in a glance of a real-world scene?,” J. Vis., Jan. 2007.

It is a well-known fact that human perception is both anytime, meaning that a scene can be described after even a short presentation, and progressive, meaning that the quality of description
increases with more time.
For example, in one well-known study, the stimulus shown was described as just “a very bright object” after 40 ms, as “possibly outdoors” after 60 ms, and as “definitely on the coast, with at least three
birds” after 500 ms.

Fei-Fei, Iyer, Koch, and Perona, “What do we perceive in a glance of a real-world scene?,” J. Vis., Jan. 2007.

Time

Time

Macé, Joubert, Nespoulous, and Fabre-Thorpe, “The time-course of visual categorizations:
you spot the animal faster than the bird.,” PLoS One, Jan. 2009.

Time

Human perception is anytime, progressive

There is also evidence that the progressive enhancement of description occurs in an ontologically meaningful way, as for example, when we recognize something as an animal before recognizing it as a
dog.

We deal with varied inputs

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

ICCV
#****

ICCV
#****

ICCV 2013 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Latent Task Adaptation with Large-scale Hierarchies

Anonymous ICCV submission

Paper ID ****

Abstract

Recent years have witnessed the success of large-scale
image classification systems that are able to identify objects
among thousands of possible labels. However, it is yet un-
clear how such general classifiers (such as the ones trained
on ImageNet) can be optimally adapted to specific tasks,
each of which only covers a semantically related subset of
all the objects in the world. It is inefficient and suboptimal
to retrain classifiers whenever a new task is given, and is
inapplicable when tasks are not given explicitly, but implic-
itly specified as a set of image queries. In this paper we
propose a novel probabilistic model that jointly identifies
the underlying task and performs prediction with a linear-
time probabilistic inference algorithm, given a set of query
images from a latent task. We present efficient ways to es-
timate parameters for the model, and an open-source dis-
tributed toolbox to train classifiers in a large scale. Empir-
ical results based on the ImageNet data showed significant
performance increase over several baseline algorithms.

1. Introduction
Recent years have witnessed a growing interest in ob-

ject classification tasks involving specific object categories,
such as fine-grained object classification [6, 12] and home
object recognition in visual robotics. Existing methods in
the literature generally describe algorithms that are trained
and tested on exactly the same task, i.e. we assume the train-
ing data and testing data share the same set of object labels.
A dog classifier is trained and tested on dogs, and a cat clas-
sifier done on cats.

However, two observations may render this “one classi-
fier per task” approach suboptimal. First, it’s often known
to be beneficial to use images of related tasks to build a bet-
ter model for the general visual world [18], which serves as
a better regularization for the specific task as well. Large-
scale learning is also shown promising by the recent efforts
on the ImageNet challenge [2, 16, 21, 13]. Second, object
categories in the real world are often organized in, or at least
well modeled by, a nested taxonomical hierarchy (e.g. Fig-

feline

dog

vehicle

golden retriever tabby cat garbage truck
(ice bear) (dungeness crab) (boathouse)

Figure 1: Top: Visualization of specific object classification
tasks of interest in daily life, which are often subtrees in a
large scale object taxonomy, e.g. the ImageNet hierarchy.
Bottom: Adapting the ImageNet classifier allows us to per-
form accurate prediction (bold), while the original classifier
prediction (in parentheses) suffers from a higher confusion.

ure 1), with classification tasks corresponding to intermedi-
ate subtrees in this hierarchy. While it is reasonable to train
separate classifiers for specific tasks, this quickly become
infeasible as there are a huge number of possible tasks -
any subtree in the hierarchy may be a latent task one may
encounter.

Thus, it would be beneficial to have a system which
learns a large number of object categories in the world, and
which is able to quickly adapt to specific incoming classi-
fication tasks once deployed. We are particularly interested
in the scenario where tasks are not explicitly given, but im-
plicitly specified with a set of query images, or a stream of
query images in an online fasion. This has practical impor-
tance: for example, one may want to have a single mobile
app that adapts to plant recognition on a field trip after a few
image queries, and that shifts to grocery recognitions when
one stops by the grocery store. This is a new challenge be-

1

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

IC
C

V
#****

IC
C

V
#****

IC
C

V
2013

S
ubm

ission
#****.

C
O

N
FID

E
N

TIA
L

R
E

V
IE

W
C

O
P

Y.D
O

N
O

T
D

IS
TR

IB
U

TE
.

LatentTask
A

daptation
w

ith
Large-scale

H
ierarchies

A
nonym

ous
IC

C
V

subm
ission

PaperID

A
bstract

Recentyears
have

w
itnessed

the
success

oflarge-scale
im

age
classification

system
sthatare

able
to

identify
objects

am
ong

thousands
ofpossible

labels.
H

ow
ever,itis

yetun-
clear

how
such

generalclassifiers
(such

as
the

ones
trained

on
Im

ageN
et)

can
be

optim
ally

adapted
to

specific
tasks,

each
ofw

hich
only

covers
a

sem
antically

related
subsetof

allthe
objects

in
the

w
orld.

Itis
inefficientand

suboptim
al

to
retrain

classifiers
w

henever
a

new
task

is
given,and

is
inapplicable

w
hen

tasks
are

notgiven
explicitly,butim

plic-
itly

specified
as

a
set

of
im

age
queries.

In
this

paper
w

e
propose

a
novel

probabilistic
m

odel
that

jointly
identifies

the
underlying

task
and

perform
s

prediction
w

ith
a

linear-
tim

e
probabilistic

inference
algorithm

,given
a

setofquery
im

ages
from

a
latenttask.

W
e

presentefficientw
ays

to
es-

tim
ate

param
eters

for
the

m
odel,and

an
open-source

dis-
tributed

toolbox
to

train
classifiers

in
a

large
scale.Em

pir-
icalresults

based
on

the
Im

ageN
etdata

show
ed

significant
perform

ance
increase

over
severalbaseline

algorithm
s.

1.Introduction
R

ecent
years

have
w

itnessed
a

grow
ing

interest
in

ob-
jectclassification

tasks
involving

specific
objectcategories,

such
as

fine-grained
objectclassification

[6,12]
and

hom
e

objectrecognition
in

visualrobotics.
Existing

m
ethods

in
the

literature
generally

describe
algorithm

s
thatare

trained
and

tested
on

exactly
the

sam
e

task,i.e.w
e

assum
e

the
train-

ing
data

and
testing

data
share

the
sam

e
setofobjectlabels.

A
dog

classifieristrained
and

tested
on

dogs,and
a

catclas-
sifierdone

on
cats.

H
ow

ever,tw
o

observations
m

ay
renderthis

“one
classi-

fier
per

task”
approach

suboptim
al.

First,it’s
often

know
n

to
be

beneficialto
use

im
agesofrelated

tasksto
build

a
bet-

term
odelforthe

generalvisualw
orld

[18],w
hich

servesas
a

better
regularization

for
the

specific
task

as
w

ell.
Large-

scale
learning

is
also

show
n

prom
ising

by
the

recentefforts
on

the
Im

ageN
etchallenge

[2,16,21,13].
Second,object

categoriesin
the

realw
orld

are
often

organized
in,oratleast

w
ellm

odeled
by,a

nested
taxonom

icalhierarchy
(e.g.Fig-

feline

dog

vehicle

golden
retriever

tabby
cat

garbage
truck

(ice
bear)

(dungeness
crab)

(boathouse)

Figure
1:Top:V

isualization
ofspecific

objectclassification
tasks

of
interestin

daily
life,w

hich
are

often
subtrees

in
a

large
scale

object
taxonom

y,
e.g.the

Im
ageN

et
hierarchy.

B
ottom

:A
dapting

the
Im

ageN
etclassifierallow

s
us

to
per-

form
accurate

prediction
(bold),w

hile
the

originalclassifier
prediction

(in
parentheses)suffers

from
a

higherconfusion.

ure
1),w

ith
classification

taskscorresponding
to

interm
edi-

ate
subtrees

in
this

hierarchy.W
hile

itis
reasonable

to
train

separate
classifiers

for
specific

tasks,this
quickly

becom
e

infeasible
as

there
are

a
huge

num
ber

of
possible

tasks
-

any
subtree

in
the

hierarchy
m

ay
be

a
latenttask

one
m

ay
encounter.

Thus,
it

w
ould

be
beneficial

to
have

a
system

w
hich

learns
a

large
num

berofobjectcategories
in

the
w

orld,and
w

hich
is

able
to

quickly
adaptto

specific
incom

ing
classi-

fication
tasks

once
deployed.W

e
are

particularly
interested

in
the

scenario
w

here
tasks

are
notexplicitly

given,butim
-

plicitly
specified

w
ith

a
setofquery

im
ages,ora

stream
of

query
im

ages
in

an
online

fasion.This
has

practicalim
por-

tance:
for

exam
ple,one

m
ay

w
antto

have
a

single
m

obile
app

thatadaptsto
plantrecognition

on
a

field
trip

aftera
few

im
age

queries,and
thatshifts

to
grocery

recognitions
w

hen
one

stops
by

the
grocery

store.This
is

a
new

challenge
be-

1

, classes, and recognition actions

In computer vision, we deal with a variety of inputs, ranging from simple frames to highly complex scenes; a large number of classes, which may be ontologically organized; and many possible
recognition actions.
Crucially, these recognition actions have different computational costs and provide different benefits.

Motivation: time-sensitive applications

Goal is to provide the best performance, given any budget.

☾ ☼ ☾

Even when it is flexible or unknown.

We are faced with a multitude of time-sensitive applications.
Driver assistance or replacement clearly has real-time needs, while large server farms can crank away with little time pressure.
In between are robotic applications, which need to respond to input in a time-sensitive way, and flexible deployments, where the quality of recognition may depend on the length of the job queue.
In settings like these, we may not be able to compute all possible features or recognize all classes.
To provide the best performance given any budget, we would like our recognition actions to depend on the input.

�1

�2

�3

�4

f 7! R or RK

Setup: classifier

• General combination of features.

• is more expensive than�4 �1

Let's begin with a general classifier, which computes features of different costs, and combines them with learned weights to output a classification score.

Setup: static feature selection

• Select best features for data source and average budget.

• Insufficient for Anytime performance.

• Static selection is not robust to image variety.

�1

�2

�3

�4

f
�3

�4

0

0
7! R or RK

Faced with a specific data source and some knowledge of the budget, we can select the best features to compute.
However, this is not sufficient for Anytime performance, when the budget may not be precisely known, and there may not be enough time to compute all features.

Setup: cascades

• Two actions: Reject and Continue.

• Anytime performance is limited.

• Fixed order is not robust to image variety.

�1

�2

�3

�4

�1

�2

�3

�4

�1

�2

�3

�4

�1

�2

�3

�4

�1 �1 �1

R or RK

The Cascade is the classical idea of evaluating features in sequence, as merited by the image.
In addition to the feature computation actions, the classifier is augmented with a rejection action.
The cascade is Anytime in a limited way, as only the rejection answer can be given before all features are evaluated.
Furthermore, the fixed order of the cascade is not robust to the fact that different images benefit from different features.

�1

�2

�3

�4

RK

�1 �2 �3 �4

�1 �2 �3

�1 �2 �3

�4

�4 �1 �2 �3 �4

�1 �2 �3 �4

�1

�2

�3

�4

�1 �2 �3 �4

RK RK

RK

• Features are selected for computation in a flexible order.

• We find a dynamic, non-myopic policy for state traversal using reinforcement learning.

• Classification answer can be given at any point in the computation.

Our method

Our work considers not a chain but a general DAG over selected-feature subsets, which allows actions to be taken in an entirely flexible order.
Given a data source and a range of budgets, we use reinforcement learning to find a policy for navigating this graph.
The policy is dynamic (meaning that it incorporates feedback) and non-myopic (meaning that it plans ahead),
This makes it robust to the fact that different images benefit from different features.
We are also able to give the classification answer from all states, making our work truly Anytime.

�1

�2

�3

�4

Our method

• We model the problem of state traversal as a Markov Decision Process.

This is how it works.
We model the problem as a Markov Decision Process, with the state consisting of the computed feature values.

�1

�2

�3

�4

Our method

• We model the problem of state traversal as a Markov Decision Process.

• For every state, we learn to select action of maximum expected value.

�4

From each state, we learn to select the action of maximum expected value, where expected value depends on how we define the Reward function -- this will be explained later.

�1

�2

�3

�4

Our method

• We model the problem of state traversal as a Markov Decision Process.

• For every state, we learn to select action of maximum expected value.

• State is updated with the result of the selected action.

�4

�1

�2

�3

�4

Upon taking an action and computing a feature, the state is updated with the result.

�1

�2

�3

�4

Our method

• We model the problem of state traversal as a Markov Decision Process.

• For every state, we learn to select action of maximum expected value.

• State is updated with the result of the selected action.

�4

�1

�2

�3

�4

�3

This process repeats until either all features are computed, or we have exhausted our budget.

�1

�2

�3

�4

Our method

• We model the problem of state traversal as a Markov Decision Process.

• For every state, we learn to select action of maximum expected value.

• State is updated with the result of the selected action.

�4

�1

�2

�3

�4

�1

�2

�3

�4

�2�3

�1

�2

�3

�4

�1

�2

�3

�4

Our method

• We model the problem of state traversal as a Markov Decision Process.

• For every state, we learn to select action of maximum expected value.

• State is updated with the result of the selected action.

�4

�1

�2

�3

�4

�1

�2

�3

�4

�2�3

�1

�2

�3

�4

�1

�2

�3

�4

Our method

• We model the problem of state traversal as a Markov Decision Process.

• For every state, we learn to select action of maximum expected value.

• State is updated with the result of the selected action.

• We train classifier on subsets of features, to give answer at any time.

�4

�1

�2

�3

�4

�1

�2

�3

�4

�2�3

RK RK RK RK

We train a classifier on all subsets of features encountered in running the policy; this allows us to give Anytime answers.

�1

�2

�3

�4

�1

�2

�3

�4

Our method

• We model the problem of state traversal as a Markov Decision Process.

• For every state, we learn to select action of maximum expected value.

• State is updated with the result of the selected action.

• We train classifier on subsets of features, to give answer at any time.

�4

�1

�2

�3

�4

�1

�2

�3

�4

�2�3

RK RK RK RK

Now all the components are in place.
So how do we learn to select actions?

�1

�2

�3

�4

Learning the value function

�4

• Action selection is done by the policy function:

�2 �3

?

⇡(s) = argmax

a2A
Q(s, a)

Our goal is to learn a policy function that will follow a simple rule: for each state, pick the action that maximizes the *value function*.
If we can learn the value function, we have our policy.

• Action selection is done by the policy function:

• gives the expected sum of rewards to the end of the episode.

�1

�2

�3

�4

Learning the value function

⇡(s) = argmax

a2A
Q(s, a)

Q(s,a)

�1

�2

�3

�4

RK

�4

R(s0)
�1

�2

�3

�4

�3

RK

�R(s00)+ �1

�2

�3

�4

�2

RK

�2R(s000)+

The Q-value function gives the expected sum of rewards of taking the action in the state, then following the policy to the end of the episode.
The reward is a function of the state, and has to be manually defined -- I will explain how we define it in a few slides.

�1

�2

�3

�4

Learning the value function

�1

�2

�3

�4

RK

�4

R(s0)
�1

�2

�3

�4

�3

RK

�R(s00)+ �1

�2

�3

�4

�2

RK

�2R(s000)+

�

• Action selection is done by the policy function:

• gives the expected sum of rewards to the end of the episode.

• Parameter controls the amount of lookahead.

⇡(s) = argmax

a2A
Q(s, a)

Q(s,a)

Note that the discount parameter gamma controls how much future rewards contribute to the value of taking an action now.
With gamma equal to 0, only the next step reward is considered.
With gamma equal to 1, future rewards are weighed equally to next-step rewards.
This can vary a policy from greedy to non-myopic.

• Action selection is done by the policy function:

• gives the expected sum of rewards to the end of the episode.

• Parameter controls the amount of lookahead.

�1

�2

�3

�4

Learning the value function

�1

�2

�3

�4

RK

�4

R(s0)
�1

�2

�3

�4

�3

RK

�R(s00)+ �1

�2

�3

�4

�2

RK

�2R(s000)+

�

⇡(s) = argmax

a2A
Q(s, a)

Q(s,a)

The Q-value function may be written recursively, as simply the next-step reward plus the discounted value of following the policy from that state.

• Action selection is done by the policy function:

• gives the expected sum of rewards to the end of the episode.

• Parameter controls the amount of lookahead.

•

�1

�2

�3

�4

Learning the value function

�1

�2

�3

�4

RK

�4

R(s0) + �Q⇡(s0,⇡(s0))

follow policy

Q⇡(s, a) = Es0 [R(s0) + �Q⇡(s0,⇡(s0))]

�

⇡(s) = argmax

a2A
Q(s, a)

Q(s,a)

The Q-value function may be written recursively, as simply the next-step reward plus the discounted value of following the policy from that state.

• We sample
by running the policy.

Learning the value function

Q⇡(s, a) = Es0 [R(s0) + �Q⇡(s0,⇡(s0))]

Q⇡(s, a) = ✓T�(s, a)
• Due to infinite number of states, we learn an approximation:

cost info

�1

�2

�3

�4

�4�()=
feature valuesaction taken

• State-action pairs are featurized with relevant values:

The Q-function is an expectation, and can be sampled by running the policy many times.
Because there is an infinite number of states, we cannot tabulate the Q-function.
Instead, we learn a linear approximation of it, for which we need a featurization of the state-action pair.
We featurize the state-action with the actions that have been taken, feature values that have been observed, and information about the action cost and remaining budget.

• We sample
by running the policy over many images.

Learning the value function

�()

�()

�()

Q⇡(s, a) = Es0 [R(s0) + �Q⇡(s0,⇡(s0))] = ✓T�(s, a)

�1

�2

�3

�4

�4 R(s0)

�4

�1

�2

�3

�3 R(s00)

actionstate reward

�1

�2

�3

�4

�2 R(s000)

To learn the approximation, we generate many recognition episodes by following a policy.`
Here, we illustrate just one episode, but there are many.
Running the policy, we gather state-action-reward tuples, and featurize state-action pairs.
At the end of the episode, we know not only the reward for each tuple, but the sampled Q-function values, obtained by adding up rewards.

• We sample
by running the policy over many images.

Learning the value function

Q⇡(s, a) = Es0 [R(s0) + �Q⇡(s0,⇡(s0))] = ✓T�(s, a)

Q(s, a4)

Q(s0, a3)

Q(s00, a2)

�(s, a4)
.

Q(s, a4)

other episodes

✓ =

• Minimize prediction error of . ✓

�(s, a4)

�(s, a4)

�(s, a4)

We gather a large training set by running episodes on many images, and update the linear approximation of the Q-value function, theta, by minimizing its prediction error.

⇡0 random;

for i 1 to max iterations do

States, Actions, Costs, Labels GatherSamples(D, ⇡i�1);

Values ComputeValues(States, Costs, Labels, gi,LB, �);
⇡i UpdatePolicy(States, Actions, Values);

end

Training algorithm

The overall training algorithm is therefore as follows:
- First, initialize policy randomly
- Gather samples by running recognition episodes with current policy.
- Compute the sampled values for every state-action tuple gathered.
- Update the Q-value function, which updates the policy.
We repeat the above until the values converge, or we're out of iterations. This is a variant of reinforcement learning algorithm called Q-iteration.

Reward definition

�1

�2

�3

�4

�1

�2

�3

�4

RK

�4

R(s0) + �Q⇡(s0,⇡(s0))

follow policy

• Still one piece missing: what is the reward?

There's still one piece missing in the story: how shall we define the reward function?

Reward definition

0 2 4 6 8 10
Cumulative cost

0.0

0.2

0.4

0.6

0.8

1.0

The goal of the Anytime classifier is to predict as correctly as possible, as cheaply as possible.

Reward definition

0 2 4 6 8 10
Cumulative cost

0.0

0.2

0.4

0.6

0.8

1.0

This corresponds to maximizing the area above the Error vs. Cost curve.

Reward definition

0 2 4 6 8 10
Cumulative cost

0.0

0.2

0.4

0.6

0.8

1.0

Each action contributes a horizontal "slice" of this area, and that is the intuition behind how we define its reward.

Reward definition

0 2 4 6 8 10
Cumulative cost

0.0

0.2

0.4

0.6

0.8

1.0

Essentially, the larger the slice, the larger the reward.

Reward definition

0 2 4 6 8 10
Cumulative cost

0.0

0.2

0.4

0.6

0.8

1.0

Reward definition

0 2 4 6 8 10
Cumulative cost

0.0

0.2

0.4

0.6

0.8

1.0

Entropy

Loss

a = hf

IHs(Y ;hf)

cf

Bs

IHs(Y ;hf)(Bs �
1

2
cf)

We found that it made for a more stable reward function to use the empirical entropy of the prediction rather than the error.
Reward then corresponds to a function of the empirical information gain.

• Classifier must be robust to range of possible feature subsets.

• Different missing-value imputation methods.

Training classifier

�1

�2

�3

�4

�1

�2

�3

�4

�1

�2

�3

�4

�1

�2

�3

�4

RK RK RK RK

• We use logistic regression.

�1

�2

�3

�4

�1 �2 �3 �4

�1 �2 �3

�1 �2 �3

�4

�4 �1 �2 �3 �4

�1 �2 �3 �4

�1

�2

�3

�4

�1 �2 �3 �4

• Mixture of classifiers.

We see that the reward function depends on the performance of the classifier. How does that work?
First of all, because our method is all about conserving computation, we only consider linear classifiers.
The classifier must be robust to a range of possible feature subsets.
We consider several missing value imputation methods, and [click] use a mixture of classifiers so as to cover different feature subsets.
We find that simple mean imputation and single components generally work best.

⇡0 random;

for i 1 to max iterations do

States, Actions, Costs, Labels GatherSamples(D, ⇡i�1);

gi UpdateClassifier(States, Labels);

Values ComputeValues(States, Costs, Labels, gi,LB, �);
⇡i UpdatePolicy(States, Actions, Values);

end

Final training algorithm

Since the distribution of feature subsets depends on the policy, our final training algorithm has an added classifier update
step.

Baselines:

• Static, greedy: do not observe feature values, select actions greedily

• Static, non-myopic: do not observe feature values, but use MDP with
� = 1 to plan ahead.

• Dynamic, greedy: observe feature values, but select actions greedily.

Our method Dynamic, non-myopic: observe feature values, and plan ahead.

Dynamic Feature Selection for Classification on a Budget

to Q̂(s, a) = ✓

T

�(s, a), on all states that we have seen
in training. During training, we gather samples start-
ing from either a random feasible state, with decaying
probability ✏, or from the initial empty state otherwise.

1.3. Learning the classifier.

A Gaussian Naive Bayes classifier can combine an
arbitrary feature subset H

⇡

, but su↵ers from its re-
strictive generative model. We found logistic regres-

sion to work better, but because it always uses the
same length feature vector, unobserved feature values
need to be imputed. We evaluate mean and Gaus-

sian imputation.

Since the classifier depends on the distribution over
states (see Figure 2) induced by the policy, and the
policy training depends on the entropy of the classifier,
the learning procedure is iterative, alternating between
learning policy and classifier.

Note that the policy ⇡ selects some feature subsets
more frequently than others. Instead of learning only
one classifier g that must be robust to all observed
feature subsets, we can learn several classifiers—for
each of the most frequent subsets—and match test
instances to classifier accordingly.

2. Evaluation

We evaluate the following baselines:

• Static, greedy: corresponds to best performance
of a policy that does not observe feature values
and selects actions greedily (� = 0).

• Static, non-myopic: policy that does not ob-
serve values but considers future action rewards
(� = 1).

• Dynamic, greedy: policy that observes feature
values, but selects actions greedily.

Our method is the Dynamic, non-myopic policy:
feature values are observed, with full lookahead.

References

Deng, Jia, Krause, Jonathan, Berg, Alexander C,
and Fei-fei, Li. Hedging Your Bets: Optimizing
Accuracy-Specificity Trade-o↵s in Large Scale Vi-
sual Recognition. In CVPR, 2012.

Gao, Tianshi and Koller, Daphne. Active Classifica-
tion based on Value of Classifier. In NIPS, 2011.

Xu, Zhixiang, Weinberger, Kilian Q, and Chapelle,
Olivier. The Greedy Miser: Learning under Test-
time Budgets. In ICML, 2012.

Feature Number Cost
d

i

: sign of dimension i D 1
q

o

: label of datapoint,
if in quadrant o

2D 10

random optimal

static, non-myopic dynamic, non-myopic

Figure 3. Evaluation on the 3-dimensional synthetic ex-
ample (best viewed in color). The data is shown at top
left; the sample feature trajectories of four di↵erent poli-
cies at top right. The plots in the bottom half show that
we recover the known optimal policy.

Dynamic

Static

Figure 4. Results on Scenes-15 dataset (best viewed in
color). 14 visual features variy in cost from 0.3 to 8 sec-
onds, and in accuracy from 0.32 to .82. Our results on this
dataset match the reported results of Active Classification
(Gao & Koller, 2011) and exceed the reported results of
Greedy Miser (Xu et al., 2012).

Figure 5. Results on the Imagenet 65-class subset. Note
that when our method is combined with Hedging Your Bets
(Deng et al., 2012), a constant accuracy can be achieved,
with specificity of predictions increasing with the budget,
as in human visual perception. (Color saturation corre-
sponds to percentage of predictions at node.)

Evaluation

Our evaluation works as follows.

Evaluation: Synthetic Example

•We construct a task where the optimal policy is known,
and has to be dynamic and non-myopic.

Evaluation: Synthetic Example

0 2 4 6 8 10 12 14
Cost

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or

Optimal

Random

Static, greedy

Static, non-myopic

Dynamic, greedy

Dynamic, non-myopic

Optimal Random Static,
greedy

Static,
non-myopic

Dynamic,
greedy

Dynamic,
non-myopic

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.318

0.000

0.617

0.453

0.610

0.444 0.455

0.355

0.618

0.452

0.331

0.000

Area under Error vs. Cost curve

Final Error

0 1 2 3 4

Number in action sequence

d0
d1
d2
q0
q1
q2
q3
q4
q5
q6
q7

A
ct

io
n

Optimal

•We construct a task where the optimal policy is known,
and has to be dynamic and non-myopic.

Evaluation: Synthetic Example

0 1 2

Number in action sequence

d0
d1
d2
q0
q1
q2
q3
q4
q5
q6
q7

A
ct

io
n

Random

0 2 4 6 8 10 12 14
Cost

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or

Optimal

Random

Static, greedy

Static, non-myopic

Dynamic, greedy

Dynamic, non-myopic

Optimal Random Static,
greedy

Static,
non-myopic

Dynamic,
greedy

Dynamic,
non-myopic

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.318

0.000

0.617

0.453

0.610

0.444 0.455

0.355

0.618

0.452

0.331

0.000

Area under Error vs. Cost curve

Final Error

•We construct a task where the optimal policy is known,
and has to be dynamic and non-myopic.

Evaluation: Synthetic Example

0 2 4 6 8 10 12 14
Cost

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or

Optimal

Random

Static, greedy

Static, non-myopic

Dynamic, greedy

Dynamic, non-myopic

Optimal Random Static,
greedy

Static,
non-myopic

Dynamic,
greedy

Dynamic,
non-myopic

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.318

0.000

0.617

0.453

0.610

0.444 0.455

0.355

0.618

0.452

0.331

0.000

Area under Error vs. Cost curve

Final Error

0 1 2 3 4

Number in action sequence

d0
d1
d2
q0
q1
q2
q3
q4
q5
q6
q7

A
ct

io
n

Static, Greedy

•We construct a task where the optimal policy is known,
and has to be dynamic and non-myopic.

Evaluation: Synthetic Example

0 2 4 6 8 10 12 14
Cost

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or

Optimal

Random

Static, greedy

Static, non-myopic

Dynamic, greedy

Dynamic, non-myopic

Optimal Random Static,
greedy

Static,
non-myopic

Dynamic,
greedy

Dynamic,
non-myopic

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.318

0.000

0.617

0.453

0.610

0.444 0.455

0.355

0.618

0.452

0.331

0.000

Area under Error vs. Cost curve

Final Error

0 1 2 3 4

Number in action sequence

d0
d1
d2
q0
q1
q2
q3
q4
q5
q6
q7

A
ct

io
n

•Our method successfully recovers it.

Dynamic, Non-Myopic

•We construct a task where the optimal policy is known,
and has to be dynamic and non-myopic.

5 10 15 20 25 30
Max Budget

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
re

a
u
n
d
er

th
e

E
rr

or
vs

.
C

os
t

cu
rv

e

Random

Static, greedy

Static, non-myopic

Dynamic, greedy

Dynamic, non-myopic

Anytime recognition of scenes
•Scenes-15 dataset.

•Actions are feature computations.

The Greedy Miser

Test-time cost

A
cc

ur
ac

y

Performance on Scene 15 data set

�=
1

4 s=0.4
�=

1

2�=1�=2
�=4

s=0.1

�=0

s=0.05

Figure 3. Accuracy as a function of cpu-cost during test-time. The
curve is generated by gradually increasing �. Miser champi-
ons the accuracy/cost tradeoff and obtains similar accuracy as the
SVM with multiple kernels with only half its test-time cost.

expensive features (cost�150) are always extracted within
early iterations. This highlights a great advantage of miser
over some other cascade algorithms (Raykar et al., 2010),
which learn cascades with pre-assigned feature costs and
cannot extract good but expensive features until the very
end.

Scene Recognition. The Scene-15 data set (Lazebnik et al.,
2006) is from a very different data domain. It contains 4485
images from 15 scene classes and the task is to classify im-
ages according to scene. Figure 4 shows one example im-
age for each scene category. We follow the procedure used
by Lazebnik et al. (2006); Li et al. (2010), randomly sam-
pling 100 images from each class, resulting in 1500 training
images. From the remaining 2985 images, we randomly
sample 20 images from each class as validation, and leave
the rest 2685 for test.

We use a diverse set of visual descriptors varying in compu-
tation time and accuracy: GIST, spatial HOG, Local Binary
Pattern, self-similarity, texton histogram, geometric texton,
geometric color, and Object Bank (Li et al., 2010). The au-
thors from Object Bank apply 177 object detectors to each
image, where each object detector works independently of
each other. We treat each object detector as an independent
descriptor and end up with a total of 184 different visual
descriptors.

We split the training data 30/70 and use the smaller subset
to construct a kernel and train 15 one-vs-all SVMs for each
descriptor. We use the predictions of these SVMs on the
larger subset as the features of miser (totaling d=184⇥15=
2760 features.) As loss function `, we use the multi-class
log-loss (Hastie et al., 2009) and maintain 15 tree-ensemble
classifiers H1, . . . , H15, one for each class. During each

suburbanbedroom industrial kitchen living room

coast forest highway inside city mountain

open country street tall building office store

Figure 4. Sample images of the Scene 15 classification task.

iteration, we construct 15 regression trees (depth 3) and
update all classifiers. For a given image, each classifier’s
(normalized exponential) output represents the probability
of this data point belonging to one class.

We compute the feature-extraction-cost as the cpu-time re-
quired for the computation for the visual descriptor, the
kernel construction and the SVM evaluation. Each visual
descriptor is used by 15 one-vs-all features. The moment
any one of these features is used, we set the feature extrac-
tion cost of all other features that are based on the same vi-
sual descriptor to only the SVM evaluation time (e.g. if the
first HOG-based feature is used, the cost of all other HOG-
based features is reduced to the time required to evaluate
the SVM). Figure 3 summarizes the results on the Scene-15
data set. As baseline we use stage-wise regression (Fried-
man, 2001) and an SVM with the averaged kernel of all de-
scriptors. We also apply stage-wise regression with Early
Exits. As this is multi-class classification instead of re-
gression we introduce an early exit every 10 trees (300 in
total), and we remove test-inputs whose maximum class-
likelihood is greater than a threshold s. We generate the
curve of early exit by gradually increasing the value for s.
The last baseline is original vision features with `1 regular-
ization, and we notice that its accuracy never exceeds 0.74,
and therefore we do not plot it. The miser curve is gen-
erated by varying loss/feature-cost trade-off �. For each
setting we choose the iteration that has the best validation
accuracy, and all results are obtained by averaging over 10
randomly generated training/testing splits.

Both, multiple-kernel SVM and stage-wise regression
achieve high accuracy, but their need to extract all features
significantly increases their cost. Early Exit has only lim-
ited improvement due to the inability to select a few expen-
sive but important features in early iterations. As before,
miser champions the cost/accuracy trade-off and its accu-
racy drops gently with increasing �.

All experiments (on both data sets) were conducted on a
desktop with dual 6-core Intel i7 cpus with 2.66GHz. The
training time for miser requires comparable amount of time

5 10 15 20 25 30
Max Budget

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
re

a
u
n
d
er

th
e

E
rr

or
vs

.
C

os
t

cu
rv

e

Random

Static, greedy

Static, non-myopic

Dynamic, greedy

Dynamic, non-myopic

0 1 2 3 4 5

Number in action sequence

gist
hog2x2

tiny image
lbp

lbphf
denseSIFT

line hists
gistPadding

sparse sift
ssim

texton
geo map8x8
geo texton

geo color

A
ct

io
n

Static, Greedy

Anytime recognition of scenes
•Scenes-15 dataset.

•Actions are feature computations.

The Greedy Miser

Test-time cost

A
cc

ur
ac

y

Performance on Scene 15 data set

�=
1

4 s=0.4
�=

1

2�=1�=2
�=4

s=0.1

�=0

s=0.05

Figure 3. Accuracy as a function of cpu-cost during test-time. The
curve is generated by gradually increasing �. Miser champi-
ons the accuracy/cost tradeoff and obtains similar accuracy as the
SVM with multiple kernels with only half its test-time cost.

expensive features (cost�150) are always extracted within
early iterations. This highlights a great advantage of miser
over some other cascade algorithms (Raykar et al., 2010),
which learn cascades with pre-assigned feature costs and
cannot extract good but expensive features until the very
end.

Scene Recognition. The Scene-15 data set (Lazebnik et al.,
2006) is from a very different data domain. It contains 4485
images from 15 scene classes and the task is to classify im-
ages according to scene. Figure 4 shows one example im-
age for each scene category. We follow the procedure used
by Lazebnik et al. (2006); Li et al. (2010), randomly sam-
pling 100 images from each class, resulting in 1500 training
images. From the remaining 2985 images, we randomly
sample 20 images from each class as validation, and leave
the rest 2685 for test.

We use a diverse set of visual descriptors varying in compu-
tation time and accuracy: GIST, spatial HOG, Local Binary
Pattern, self-similarity, texton histogram, geometric texton,
geometric color, and Object Bank (Li et al., 2010). The au-
thors from Object Bank apply 177 object detectors to each
image, where each object detector works independently of
each other. We treat each object detector as an independent
descriptor and end up with a total of 184 different visual
descriptors.

We split the training data 30/70 and use the smaller subset
to construct a kernel and train 15 one-vs-all SVMs for each
descriptor. We use the predictions of these SVMs on the
larger subset as the features of miser (totaling d=184⇥15=
2760 features.) As loss function `, we use the multi-class
log-loss (Hastie et al., 2009) and maintain 15 tree-ensemble
classifiers H1, . . . , H15, one for each class. During each

suburbanbedroom industrial kitchen living room

coast forest highway inside city mountain

open country street tall building office store

Figure 4. Sample images of the Scene 15 classification task.

iteration, we construct 15 regression trees (depth 3) and
update all classifiers. For a given image, each classifier’s
(normalized exponential) output represents the probability
of this data point belonging to one class.

We compute the feature-extraction-cost as the cpu-time re-
quired for the computation for the visual descriptor, the
kernel construction and the SVM evaluation. Each visual
descriptor is used by 15 one-vs-all features. The moment
any one of these features is used, we set the feature extrac-
tion cost of all other features that are based on the same vi-
sual descriptor to only the SVM evaluation time (e.g. if the
first HOG-based feature is used, the cost of all other HOG-
based features is reduced to the time required to evaluate
the SVM). Figure 3 summarizes the results on the Scene-15
data set. As baseline we use stage-wise regression (Fried-
man, 2001) and an SVM with the averaged kernel of all de-
scriptors. We also apply stage-wise regression with Early
Exits. As this is multi-class classification instead of re-
gression we introduce an early exit every 10 trees (300 in
total), and we remove test-inputs whose maximum class-
likelihood is greater than a threshold s. We generate the
curve of early exit by gradually increasing the value for s.
The last baseline is original vision features with `1 regular-
ization, and we notice that its accuracy never exceeds 0.74,
and therefore we do not plot it. The miser curve is gen-
erated by varying loss/feature-cost trade-off �. For each
setting we choose the iteration that has the best validation
accuracy, and all results are obtained by averaging over 10
randomly generated training/testing splits.

Both, multiple-kernel SVM and stage-wise regression
achieve high accuracy, but their need to extract all features
significantly increases their cost. Early Exit has only lim-
ited improvement due to the inability to select a few expen-
sive but important features in early iterations. As before,
miser champions the cost/accuracy trade-off and its accu-
racy drops gently with increasing �.

All experiments (on both data sets) were conducted on a
desktop with dual 6-core Intel i7 cpus with 2.66GHz. The
training time for miser requires comparable amount of time

5 10 15 20 25 30
Max Budget

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
re

a
u
n
d
er

th
e

E
rr

or
vs

.
C

os
t

cu
rv

e

Random

Static, greedy

Static, non-myopic

Dynamic, greedy

Dynamic, non-myopic

0 1 2 3 4 5

Number in action sequence

gist
hog2x2

tiny image
lbp

lbphf
denseSIFT

line hists
gistPadding

sparse sift
ssim

texton
geo map8x8
geo texton

geo color

A
ct

io
n

0 1 2 3 4

Number in action sequence

gist
hog2x2

tiny image
lbp

lbphf
denseSIFT

line hists
gistPadding

sparse sift
ssim

texton
geo map8x8
geo texton

geo color

A
ct

io
n

Static, Greedy

Dynamic, Non-Myopic

Anytime recognition of scenes
•Scenes-15 dataset.

•Actions are feature computations.

The Greedy Miser

Test-time cost

A
cc

ur
ac

y

Performance on Scene 15 data set

�=
1

4 s=0.4
�=

1

2�=1�=2
�=4

s=0.1

�=0

s=0.05

Figure 3. Accuracy as a function of cpu-cost during test-time. The
curve is generated by gradually increasing �. Miser champi-
ons the accuracy/cost tradeoff and obtains similar accuracy as the
SVM with multiple kernels with only half its test-time cost.

expensive features (cost�150) are always extracted within
early iterations. This highlights a great advantage of miser
over some other cascade algorithms (Raykar et al., 2010),
which learn cascades with pre-assigned feature costs and
cannot extract good but expensive features until the very
end.

Scene Recognition. The Scene-15 data set (Lazebnik et al.,
2006) is from a very different data domain. It contains 4485
images from 15 scene classes and the task is to classify im-
ages according to scene. Figure 4 shows one example im-
age for each scene category. We follow the procedure used
by Lazebnik et al. (2006); Li et al. (2010), randomly sam-
pling 100 images from each class, resulting in 1500 training
images. From the remaining 2985 images, we randomly
sample 20 images from each class as validation, and leave
the rest 2685 for test.

We use a diverse set of visual descriptors varying in compu-
tation time and accuracy: GIST, spatial HOG, Local Binary
Pattern, self-similarity, texton histogram, geometric texton,
geometric color, and Object Bank (Li et al., 2010). The au-
thors from Object Bank apply 177 object detectors to each
image, where each object detector works independently of
each other. We treat each object detector as an independent
descriptor and end up with a total of 184 different visual
descriptors.

We split the training data 30/70 and use the smaller subset
to construct a kernel and train 15 one-vs-all SVMs for each
descriptor. We use the predictions of these SVMs on the
larger subset as the features of miser (totaling d=184⇥15=
2760 features.) As loss function `, we use the multi-class
log-loss (Hastie et al., 2009) and maintain 15 tree-ensemble
classifiers H1, . . . , H15, one for each class. During each

suburbanbedroom industrial kitchen living room

coast forest highway inside city mountain

open country street tall building office store

Figure 4. Sample images of the Scene 15 classification task.

iteration, we construct 15 regression trees (depth 3) and
update all classifiers. For a given image, each classifier’s
(normalized exponential) output represents the probability
of this data point belonging to one class.

We compute the feature-extraction-cost as the cpu-time re-
quired for the computation for the visual descriptor, the
kernel construction and the SVM evaluation. Each visual
descriptor is used by 15 one-vs-all features. The moment
any one of these features is used, we set the feature extrac-
tion cost of all other features that are based on the same vi-
sual descriptor to only the SVM evaluation time (e.g. if the
first HOG-based feature is used, the cost of all other HOG-
based features is reduced to the time required to evaluate
the SVM). Figure 3 summarizes the results on the Scene-15
data set. As baseline we use stage-wise regression (Fried-
man, 2001) and an SVM with the averaged kernel of all de-
scriptors. We also apply stage-wise regression with Early
Exits. As this is multi-class classification instead of re-
gression we introduce an early exit every 10 trees (300 in
total), and we remove test-inputs whose maximum class-
likelihood is greater than a threshold s. We generate the
curve of early exit by gradually increasing the value for s.
The last baseline is original vision features with `1 regular-
ization, and we notice that its accuracy never exceeds 0.74,
and therefore we do not plot it. The miser curve is gen-
erated by varying loss/feature-cost trade-off �. For each
setting we choose the iteration that has the best validation
accuracy, and all results are obtained by averaging over 10
randomly generated training/testing splits.

Both, multiple-kernel SVM and stage-wise regression
achieve high accuracy, but their need to extract all features
significantly increases their cost. Early Exit has only lim-
ited improvement due to the inability to select a few expen-
sive but important features in early iterations. As before,
miser champions the cost/accuracy trade-off and its accu-
racy drops gently with increasing �.

All experiments (on both data sets) were conducted on a
desktop with dual 6-core Intel i7 cpus with 2.66GHz. The
training time for miser requires comparable amount of time

Fei-Fei, Iyer, Koch, and Perona, “What do we perceive in a glance of a real-world scene?,” J. Vis., Jan. 2007.

Time

Time

Macé, Joubert, Nespoulous, and Fabre-Thorpe, “The time-course of visual categorizations:
you spot the animal faster than the bird.,” PLoS One, Jan. 2009.

Time

Human perception is anytime, progressive

Recall our initial motivation of progressively specific visual perception.

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

ICCV
#****

ICCV
#****

ICCV 2013 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Latent Task Adaptation with Large-scale Hierarchies

Anonymous ICCV submission

Paper ID ****

Abstract

Recent years have witnessed the success of large-scale
image classification systems that are able to identify objects
among thousands of possible labels. However, it is yet un-
clear how such general classifiers (such as the ones trained
on ImageNet) can be optimally adapted to specific tasks,
each of which only covers a semantically related subset of
all the objects in the world. It is inefficient and suboptimal
to retrain classifiers whenever a new task is given, and is
inapplicable when tasks are not given explicitly, but implic-
itly specified as a set of image queries. In this paper we
propose a novel probabilistic model that jointly identifies
the underlying task and performs prediction with a linear-
time probabilistic inference algorithm, given a set of query
images from a latent task. We present efficient ways to es-
timate parameters for the model, and an open-source dis-
tributed toolbox to train classifiers in a large scale. Empir-
ical results based on the ImageNet data showed significant
performance increase over several baseline algorithms.

1. Introduction
Recent years have witnessed a growing interest in ob-

ject classification tasks involving specific object categories,
such as fine-grained object classification [6, 12] and home
object recognition in visual robotics. Existing methods in
the literature generally describe algorithms that are trained
and tested on exactly the same task, i.e. we assume the train-
ing data and testing data share the same set of object labels.
A dog classifier is trained and tested on dogs, and a cat clas-
sifier done on cats.

However, two observations may render this “one classi-
fier per task” approach suboptimal. First, it’s often known
to be beneficial to use images of related tasks to build a bet-
ter model for the general visual world [18], which serves as
a better regularization for the specific task as well. Large-
scale learning is also shown promising by the recent efforts
on the ImageNet challenge [2, 16, 21, 13]. Second, object
categories in the real world are often organized in, or at least
well modeled by, a nested taxonomical hierarchy (e.g. Fig-

feline

dog

vehicle

golden retriever tabby cat garbage truck
(ice bear) (dungeness crab) (boathouse)

Figure 1: Top: Visualization of specific object classification
tasks of interest in daily life, which are often subtrees in a
large scale object taxonomy, e.g. the ImageNet hierarchy.
Bottom: Adapting the ImageNet classifier allows us to per-
form accurate prediction (bold), while the original classifier
prediction (in parentheses) suffers from a higher confusion.

ure 1), with classification tasks corresponding to intermedi-
ate subtrees in this hierarchy. While it is reasonable to train
separate classifiers for specific tasks, this quickly become
infeasible as there are a huge number of possible tasks -
any subtree in the hierarchy may be a latent task one may
encounter.

Thus, it would be beneficial to have a system which
learns a large number of object categories in the world, and
which is able to quickly adapt to specific incoming classi-
fication tasks once deployed. We are particularly interested
in the scenario where tasks are not explicitly given, but im-
plicitly specified with a set of query images, or a stream of
query images in an online fasion. This has practical impor-
tance: for example, one may want to have a single mobile
app that adapts to plant recognition on a field trip after a few
image queries, and that shifts to grocery recognitions when
one stops by the grocery store. This is a new challenge be-

1

enƟty

animal

0

0 2 0

0

0

1

1

0 1 0

0

0

1

ground truth

(b)Accuracy of predicƟon (c)Reward of predicƟon (a)SemanƟc hierarchy

vehicle

dog bird car boat ground truth

Figure 2. Illustration of the formulation with a simple hierarchy.
The numbers correspond to the accuracy (middle) and the reward
(information gain) of a prediction (right) given the ground truth.

evant in many visual tasks with high level semantic labels,
e.g., detection, scene understanding, describing images with
sentences, etc. Our focus here, multiclass image classifica-
tion, serves as a building block. To our knowledge this is
the first time that optimizing the accuracy-specificity trade-
off has been addressed in large scale visual recognition.

In this work, we make the following contributions: (1)
introducing the problem of classification in a hierarchy sub-
ject to an accuracy bound while maximizing information
gain (or other measures), (2) proposing the Dual Accuracy
Reward Trade-off Search (DARTS) algorithm and proving
a non-trivial result that, under practical conditions, it con-
verges to an optimal solution, and (3) validating our algo-
rithm with experiments on 65 to more than 10,000 classes,
showing large improvements over baseline approaches.

2. Related Work
Our problem is related to cost-sensitive classification and

hierarchical classification [33, 22, 7, 9, 4, 2, 14, 1, 35, 29,
20, 21, 16, 23, 34, 5, 18]. The key differences are: (1) con-
ventional multiclass or cost-sensitive techniques do not con-
sider overlapping classes in a hierarchy; (2) previous work
on hierarchical classification has not addressed the issue of
automatically selecting the appropriate level of abstraction
to optimize the accuracy-specificity trade-off.

Also related is classification with reject options, which
grants binary classifiers an option to abstain, for a partic-
ular cost [32, 10]. In the multiclass case [17, 15, 6], also
termed “class selective rejection”, the classifier can output
an arbitrary set of classes. Our problem fits in this frame-
work, with the admissible sets restricted to internal nodes
of the hierarchy. To our knowledge we are the first to con-
nect class selective rejection with hierarchical visual classi-
fication. Our primal dual framework follows [15], but our
results on the optimality of DARTS are new (Sec. 4.2).

Our work is also inspired by an emerging trend in com-
puter vision studying large scale visual recognition [19, 27,
13, 12, 31, 7, 26, 24]. Our technique scales up easily and
we demonstrate its effectiveness on large scale datasets.

3. Formulation
We describe the visual world with a semantic hierarchy

H = (V,E), a directed acyclic graph (DAG) with a unique

root v̂ ∈ V , each node v ∈ V representing a semantic class
(Fig. 2a). The leaf nodes Y ⊂ V are mutually exclusive
classes. The internal nodes are unions of leaf nodes deter-
mined by the hierarchy, e.g., in Fig. 2a, “animal” is a combi-
nation of “dog” and “bird”, while “entity” is a combination
of everything under “animal” and “vehicle”.

Given the hierarchy, it is then correct to label an image
at either its ground truth leaf node or any of its ancestors
(Fig. 2b), e.g., a dog is also an animal and an entity. Let
X be an image represented in some feature space and Y its
ground truth leaf label, X and Y drawn from a joint distri-
bution on X × Y . A classifier f : X → V labels an image
x ∈ X as a node v ∈ V , either a leaf node or an internal
node. The accuracy Φ(f) of the classifier f is then

Φ(f) = E [(f(X) ∈ π(Y)] 1, (1)

where π(Y) is the set of all possible correct predictions,
i.e., the ground truth leaf node and its ancestors. Note that
without the internal nodes, Φ(f) reduces to the conventional
flat multiclass accuracy. In this paper, we use “accuracy” in
the hierarchical sense unless stated otherwise.

The conventional goal of classification is maximizing ac-
curacy. In our case, however, always predicting the root
node ensures 100% accuracy, yielding an uninformative so-
lution. We clearly prefer an answer of “dog” over “entity”,
whenever they are both correct. We encode this preference
as a reward rv ≥ 0 for each node v ∈ V . One natural
reward is information gain, the decrease in uncertainty (en-
tropy) from the prior distribution to the posterior over the
leaf classes. Assuming a uniform prior, it is easy to verify
that a prediction at node v decreases the entropy by

rv = log2 |Y|− log2
∑

y∈Y
[v ∈ π(y)]. (2)

The information gain is zero at the root node and maximized
at a leaf node. Note that we use information gain in experi-
ments but our algorithm and analysis can accommodate an
arbitrary non-negative reward. Given the reward of each
node, the reward R(f) for a classifier f is

R(f) = E
(
rf(X)[f(X) ∈ π(Y)]

)
, (3)

i.e., rv for a correct prediction at node v, and 0 for a wrong
one (Fig. 2c). In the case of information gain, the reward
of a classifier is the average amount of correct information
it gives. Our goal then is to maximize the reward given an
arbitrary accuracy guarantee 0 < 1− ϵ ≤ 1, i.e.,

maximize
f

R(f)

subject to Φ(f) ≥ 1− ϵ.
(OP1)

Note that OP1 is always feasible because there exists a triv-
ial solution that only predicts the root node.

1“[P]” is the Iverson bracket, i.e., 1 if P is true and 0 otherwise.

2

J. Deng, J. Krause, A. C. Berg, and L. Fei-fei, “Hedging Your Bets:
Optimizing Accuracy-Specificity Trade-offs in Large Scale Visual
Recognition,” in CVPR, 2012.

Anytime recognition of objects

The ImageNet dataset provides a full hierarchy of classes, and lets us leverage prior work in trading off accuracy and specificity.

10 20 30 40 50 60
Max Budget

0.75

0.80

0.85

0.90

0.95

1.00

A
re

a
u
n
d
er

th
e

E
rr

or
vs

.
C

os
t

cu
rv

e

Random

Static, greedy

Static, non-myopic

Dynamic, greedy

Dynamic, non-myopic

•Actions are class evaluations.

Anytime recognition of objects

The actions on this task are class evaluations.
Our dynamic, non-myopic method also outperforms the baselines on this task.

Cost

vehicle

boat

carcat

object

bird

animal

dog

vehicle

boat

carcat

object

bird

animal

dog

vehicle

boat

carcat

object

bird

animal

dog

Cost: 1

vehicle

boat

carcat

object

bird

animal

dog

vehicle

boat

carcat

object

bird

animal

dog

vehicle

boat

carcat

object

bird

animal

dog

Cost: 9

vehicle

boat

carcat

object

bird

animal

dog

vehicle

boat

carcat

object

bird

animal

dog

vehicle

boat

carcat

object

bird

animal

dog

Cost: 17

vehicle

boat

carcat

object

bird

animal

dog

vehicle

boat

carcat

object

bird

animal

dog

vehicle

boat

carcat

object

bird

animal

dog

Cost: 26
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Anytime recognition of objects with increasing specificity

Er
ro

r

Conclusions

•Method for dynamic, non-myopic selection of recognition actions
for Anytime performance.

•Formulation accommodates many types of recognition actions.

• Avenue for further study of time-course of perception.

•Code and more details available at
http://sergeykarayev.com/recognition-on-a-budget/

http://sergeykarayev.com/recognition-on-a-budget/
http://sergeykarayev.com/recognition-on-a-budget/

