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Figure 3: Evaluation on the synthetic example (best viewed in color). The data and the feature costs are shown at top left; the
sample feature trajectories of different policies at top right. (The opacity of the edges corresponds to their prevalence during
policy execution; the opacity of the nodes corresponds to the amount of reward obtained in that state.) Note that the static,
non-myopic policy correctly learns to select the cheap features first, but is not able to correctly branch, while our dynamic,
non-myopic approach finds the optimal strategy. The plots in the bottom half give the error vs. cost numbers.

baselines and our method, trained given the correct minimal
budget.

4.2. Scene recognition.

The Scene-15 dataset [18] contains 4485 images from
15 visual scene classes. The task is to classify images ac-
cording to scene. Following [24], we extracted 14 different
visual features (GIST, HOG, TinyImages, LBP, SIFT, Line
Histograms, Self-Similarity, Textons, Color Histograms,
and variations). The features vary in cost from 0.3 sec-
onds to 8 seconds, and in single-feature accuracy from
0.32 (TinyImages) to .82 (HOG). Separate multi-class lin-
ear SVMs were trained on each feature channel, using a ran-
dom 100 positive example images per class for training. We
used the liblinear implementation, and K-fold cross-
validated the penalty parameter C. The trained SVMs were
evaluated on the images not used for training, resulting in a
dataset of 2238 vectors of 210 confidence values: 15 classes

for each of the 14 feature channels. This dataset was split
60-40 into training and test sets for our experiments.

Figure 4 shows the results, including learned policy tra-
jectories. For all evaluated budgets, our dynamic, non-
myopic method outperforms all others on the area under the
error vs. cost curve metric. Our results on this dataset match
the reported results of Active Classification [12] (Figure 2)
and Greedy Miser [26] (Figure 3), although both methods
use an additional powerful feature channel (ObjectBank)1.

4.3. ImageNet and maximizing specificity.

The full ImageNet dataset has over 10K categories and
over a million images [5]. The classes are organized in
a hierarchical structure, which can be exploited for novel
recognition tasks. We evaluate on a 65-class subset intro-

1Detailed results for this and other experiments are on the project page
(see front page for the link).

5 10 15 20 25 30
Max Budget

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
re

a
u
n
d
er

th
e

E
rr

or
vs

.
C

os
t

cu
rv

e

Random

Static, greedy

Static, non-myopic

Dynamic, greedy

Dynamic, non-myopic

Anytime Recognition of Objects and Scenes Sergey Karayev · Mario Fritz · Trevor Darrell
        UC Berkeley          MPI for Informatics         UC Berkeley

‣Even when budget does not let us compute 
everything, want to provide best performance.

The Greedy Miser

Test-time cost

A
cc

ur
ac

y

Performance on Scene 15 data set

�=
1

4 s=0.4
�=

1

2�=1�=2
�=4

s=0.1

�=0

s=0.05

Figure 3. Accuracy as a function of cpu-cost during test-time. The
curve is generated by gradually increasing �. Miser champi-
ons the accuracy/cost tradeoff and obtains similar accuracy as the
SVM with multiple kernels with only half its test-time cost.

expensive features (cost�150) are always extracted within
early iterations. This highlights a great advantage of miser
over some other cascade algorithms (Raykar et al., 2010),
which learn cascades with pre-assigned feature costs and
cannot extract good but expensive features until the very
end.

Scene Recognition. The Scene-15 data set (Lazebnik et al.,
2006) is from a very different data domain. It contains 4485
images from 15 scene classes and the task is to classify im-
ages according to scene. Figure 4 shows one example im-
age for each scene category. We follow the procedure used
by Lazebnik et al. (2006); Li et al. (2010), randomly sam-
pling 100 images from each class, resulting in 1500 training
images. From the remaining 2985 images, we randomly
sample 20 images from each class as validation, and leave
the rest 2685 for test.

We use a diverse set of visual descriptors varying in compu-
tation time and accuracy: GIST, spatial HOG, Local Binary
Pattern, self-similarity, texton histogram, geometric texton,
geometric color, and Object Bank (Li et al., 2010). The au-
thors from Object Bank apply 177 object detectors to each
image, where each object detector works independently of
each other. We treat each object detector as an independent
descriptor and end up with a total of 184 different visual
descriptors.

We split the training data 30/70 and use the smaller subset
to construct a kernel and train 15 one-vs-all SVMs for each
descriptor. We use the predictions of these SVMs on the
larger subset as the features of miser (totaling d=184⇥15=
2760 features.) As loss function `, we use the multi-class
log-loss (Hastie et al., 2009) and maintain 15 tree-ensemble
classifiers H1, . . . , H15, one for each class. During each

suburbanbedroom industrial kitchen living room

coast forest highway inside city mountain

open country street tall building office store

Figure 4. Sample images of the Scene 15 classification task.

iteration, we construct 15 regression trees (depth 3) and
update all classifiers. For a given image, each classifier’s
(normalized exponential) output represents the probability
of this data point belonging to one class.

We compute the feature-extraction-cost as the cpu-time re-
quired for the computation for the visual descriptor, the
kernel construction and the SVM evaluation. Each visual
descriptor is used by 15 one-vs-all features. The moment
any one of these features is used, we set the feature extrac-
tion cost of all other features that are based on the same vi-
sual descriptor to only the SVM evaluation time (e.g. if the
first HOG-based feature is used, the cost of all other HOG-
based features is reduced to the time required to evaluate
the SVM). Figure 3 summarizes the results on the Scene-15
data set. As baseline we use stage-wise regression (Fried-
man, 2001) and an SVM with the averaged kernel of all de-
scriptors. We also apply stage-wise regression with Early
Exits. As this is multi-class classification instead of re-
gression we introduce an early exit every 10 trees (300 in
total), and we remove test-inputs whose maximum class-
likelihood is greater than a threshold s. We generate the
curve of early exit by gradually increasing the value for s.
The last baseline is original vision features with `1 regular-
ization, and we notice that its accuracy never exceeds 0.74,
and therefore we do not plot it. The miser curve is gen-
erated by varying loss/feature-cost trade-off �. For each
setting we choose the iteration that has the best validation
accuracy, and all results are obtained by averaging over 10
randomly generated training/testing splits.

Both, multiple-kernel SVM and stage-wise regression
achieve high accuracy, but their need to extract all features
significantly increases their cost. Early Exit has only lim-
ited improvement due to the inability to select a few expen-
sive but important features in early iterations. As before,
miser champions the cost/accuracy trade-off and its accu-
racy drops gently with increasing �.

All experiments (on both data sets) were conducted on a
desktop with dual 6-core Intel i7 cpus with 2.66GHz. The
training time for miser requires comparable amount of time
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Figure 2. Illustration of the formulation with a simple hierarchy.
The numbers correspond to the accuracy (middle) and the reward
(information gain) of a prediction (right) given the ground truth.

evant in many visual tasks with high level semantic labels,
e.g., detection, scene understanding, describing images with
sentences, etc. Our focus here, multiclass image classifica-
tion, serves as a building block. To our knowledge this is
the first time that optimizing the accuracy-specificity trade-
off has been addressed in large scale visual recognition.

In this work, we make the following contributions: (1)
introducing the problem of classification in a hierarchy sub-
ject to an accuracy bound while maximizing information
gain (or other measures), (2) proposing the Dual Accuracy
Reward Trade-off Search (DARTS) algorithm and proving
a non-trivial result that, under practical conditions, it con-
verges to an optimal solution, and (3) validating our algo-
rithm with experiments on 65 to more than 10,000 classes,
showing large improvements over baseline approaches.

2. Related Work
Our problem is related to cost-sensitive classification and

hierarchical classification [33, 22, 7, 9, 4, 2, 14, 1, 35, 29,
20, 21, 16, 23, 34, 5, 18]. The key differences are: (1) con-
ventional multiclass or cost-sensitive techniques do not con-
sider overlapping classes in a hierarchy; (2) previous work
on hierarchical classification has not addressed the issue of
automatically selecting the appropriate level of abstraction
to optimize the accuracy-specificity trade-off.

Also related is classification with reject options, which
grants binary classifiers an option to abstain, for a partic-
ular cost [32, 10]. In the multiclass case [17, 15, 6], also
termed “class selective rejection”, the classifier can output
an arbitrary set of classes. Our problem fits in this frame-
work, with the admissible sets restricted to internal nodes
of the hierarchy. To our knowledge we are the first to con-
nect class selective rejection with hierarchical visual classi-
fication. Our primal dual framework follows [15], but our
results on the optimality of DARTS are new (Sec. 4.2).

Our work is also inspired by an emerging trend in com-
puter vision studying large scale visual recognition [19, 27,
13, 12, 31, 7, 26, 24]. Our technique scales up easily and
we demonstrate its effectiveness on large scale datasets.

3. Formulation
We describe the visual world with a semantic hierarchy

H = (V,E), a directed acyclic graph (DAG) with a unique

root v̂ ∈ V , each node v ∈ V representing a semantic class
(Fig. 2a). The leaf nodes Y ⊂ V are mutually exclusive
classes. The internal nodes are unions of leaf nodes deter-
mined by the hierarchy, e.g., in Fig. 2a, “animal” is a combi-
nation of “dog” and “bird”, while “entity” is a combination
of everything under “animal” and “vehicle”.

Given the hierarchy, it is then correct to label an image
at either its ground truth leaf node or any of its ancestors
(Fig. 2b), e.g., a dog is also an animal and an entity. Let
X be an image represented in some feature space and Y its
ground truth leaf label, X and Y drawn from a joint distri-
bution on X × Y . A classifier f : X → V labels an image
x ∈ X as a node v ∈ V , either a leaf node or an internal
node. The accuracy Φ(f) of the classifier f is then

Φ(f) = E [(f(X) ∈ π(Y )] 1, (1)

where π(Y ) is the set of all possible correct predictions,
i.e., the ground truth leaf node and its ancestors. Note that
without the internal nodes, Φ(f) reduces to the conventional
flat multiclass accuracy. In this paper, we use “accuracy” in
the hierarchical sense unless stated otherwise.

The conventional goal of classification is maximizing ac-
curacy. In our case, however, always predicting the root
node ensures 100% accuracy, yielding an uninformative so-
lution. We clearly prefer an answer of “dog” over “entity”,
whenever they are both correct. We encode this preference
as a reward rv ≥ 0 for each node v ∈ V . One natural
reward is information gain, the decrease in uncertainty (en-
tropy) from the prior distribution to the posterior over the
leaf classes. Assuming a uniform prior, it is easy to verify
that a prediction at node v decreases the entropy by

rv = log2 |Y|− log2
∑

y∈Y
[v ∈ π(y)]. (2)

The information gain is zero at the root node and maximized
at a leaf node. Note that we use information gain in experi-
ments but our algorithm and analysis can accommodate an
arbitrary non-negative reward. Given the reward of each
node, the reward R(f) for a classifier f is

R(f) = E
(
rf(X)[f(X) ∈ π(Y )]

)
, (3)

i.e., rv for a correct prediction at node v, and 0 for a wrong
one (Fig. 2c). In the case of information gain, the reward
of a classifier is the average amount of correct information
it gives. Our goal then is to maximize the reward given an
arbitrary accuracy guarantee 0 < 1− ϵ ≤ 1, i.e.,

maximize
f

R(f)

subject to Φ(f) ≥ 1− ϵ.
(OP1)

Note that OP1 is always feasible because there exists a triv-
ial solution that only predicts the root node.

1“[P ]” is the Iverson bracket, i.e., 1 if P is true and 0 otherwise.
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where � : S ⇥ A 7! Rd

s is the state featurization function, d
s

is the dimensionality of the state
feature vector, and ✓ is a vector of weights that defines the policy.

Specifically, the policy is defined as

⇡(a | s) =

1

Z
exp

✓
1

⌧
✓T �(s, a)

◆
(2)

where Z is the appropriate normalization and ⌧ is a temperature parameter that controls the level
of exploration vs. exploitation in the policy. As ⌧ ! 0, ⇡(a | s) becomes highly peaked at
arg max

a

Q(s, a); it becomes uniform as ⌧ !1.

As commonly done, we learn the ✓ by policy iteration. First, we gather (s, a, r, s0
) samples by

running episodes (to completion) with the current policy parameters ✓
i

. From these samples, ˆQ(s, a)

values are computed, and ✓
i+1 are given by L2-regularized least squares solution to ˆQ(s, a) =

✓T �(s, a), on all states that we have seen in training.

During training, we gather samples starting from either a random feasible state, with probability ✏,
or from the initial empty state otherwise. Both ✏ and ⌧ parameters decay exponentially with the
number of training iterations. Training is terminated if ⇡

✓

i+1 returns the exact same sequence of
episodes ⇠ on a validation set as ⇡

✓

i

.

Static vs. Dynamic state-action feature vector. The featurization function �(s) extracts the fol-
lowing features from the state:

• Bit vector m of length F : initially all bits are 1 and are set to 0 when the corresponding
feature is computed.

• For each h
f

, a vector of size d
f

representing the values; 0 until observed.
• Cost feature c 2 [0, 1], for fraction of the budget spent.
• Bias feature 1.

These features define the dynamic state, presenting enough information to have a closed-loop (dy-
namic) policy that may select different features for different test instances. The static state has all
of the above features except for the observed feature values. This enables only an open-loop (static)
policy, which is exactly the same for all instances. Policy learned with the static state is used as a
baseline in experiments.

The state-action feature function �(s, a) effectively block-codes these features: it is 0 everywhere
except the block corresponding to the action considered. In implementation, we train F separate
regressions with a tied regularization parameter, which is K-fold cross-validated.

Effect of �. Note that solving the MDP with these features and with � = 0 finds a Static, greedy

policy: the value of taking an action in a state is exactly the expected reward to be obtained. When
� = 1, the value of taking an action is the entire area above the curve as defined in Figure 1, and we
learn the Static, non-myopic policy—another baseline.

3.4 Learning the classifier.

Input: D = {x
n

, y
n

}N

n=1; LB
Result: Trained ⇡, g

⇡0  random;
for i 1 to max iterations do

States, Actions, Costs, Labels GatherSamples(D, ⇡
i�1);

g
i

 UpdateClassifier(States, Labels);
Rewards ComputeRewards(States, Costs, Labels, g

i

, LB, �);
⇡

i

 UpdatePolicy(States, Actions, Rewards);
end

Algorithm 1: Because reward computation depends on the classifier, and the distribution of states
depends on the policy, g and ⇡ are trained iteratively.
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Abstract

Recent years have witnessed the success of large-scale
image classification systems that are able to identify objects
among thousands of possible labels. However, it is yet un-
clear how such general classifiers (such as the ones trained
on ImageNet) can be optimally adapted to specific tasks,
each of which only covers a semantically related subset of
all the objects in the world. It is inefficient and suboptimal
to retrain classifiers whenever a new task is given, and is
inapplicable when tasks are not given explicitly, but implic-
itly specified as a set of image queries. In this paper we
propose a novel probabilistic model that jointly identifies
the underlying task and performs prediction with a linear-
time probabilistic inference algorithm, given a set of query
images from a latent task. We present efficient ways to es-
timate parameters for the model, and an open-source dis-
tributed toolbox to train classifiers in a large scale. Empir-
ical results based on the ImageNet data showed significant
performance increase over several baseline algorithms.

1. Introduction
Recent years have witnessed a growing interest in ob-

ject classification tasks involving specific object categories,
such as fine-grained object classification [6, 12] and home
object recognition in visual robotics. Existing methods in
the literature generally describe algorithms that are trained
and tested on exactly the same task, i.e. we assume the train-
ing data and testing data share the same set of object labels.
A dog classifier is trained and tested on dogs, and a cat clas-
sifier done on cats.

However, two observations may render this “one classi-
fier per task” approach suboptimal. First, it’s often known
to be beneficial to use images of related tasks to build a bet-
ter model for the general visual world [18], which serves as
a better regularization for the specific task as well. Large-
scale learning is also shown promising by the recent efforts
on the ImageNet challenge [2, 16, 21, 13]. Second, object
categories in the real world are often organized in, or at least
well modeled by, a nested taxonomical hierarchy (e.g. Fig-

feline

dog

vehicle

golden retriever tabby cat garbage truck
(ice bear) (dungeness crab) (boathouse)

Figure 1: Top: Visualization of specific object classification
tasks of interest in daily life, which are often subtrees in a
large scale object taxonomy, e.g. the ImageNet hierarchy.
Bottom: Adapting the ImageNet classifier allows us to per-
form accurate prediction (bold), while the original classifier
prediction (in parentheses) suffers from a higher confusion.

ure 1), with classification tasks corresponding to intermedi-
ate subtrees in this hierarchy. While it is reasonable to train
separate classifiers for specific tasks, this quickly become
infeasible as there are a huge number of possible tasks -
any subtree in the hierarchy may be a latent task one may
encounter.

Thus, it would be beneficial to have a system which
learns a large number of object categories in the world, and
which is able to quickly adapt to specific incoming classi-
fication tasks once deployed. We are particularly interested
in the scenario where tasks are not explicitly given, but im-
plicitly specified with a set of query images, or a stream of
query images in an online fasion. This has practical impor-
tance: for example, one may want to have a single mobile
app that adapts to plant recognition on a field trip after a few
image queries, and that shifts to grocery recognitions when
one stops by the grocery store. This is a new challenge be-
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We evaluate these baseline policies:

• Static, greedy: does not observe feature values, selects actions greedily.

• Static, non-myopic: does not observe feature values, but plans ahead
(using MDP with � = 1).

• Dynamic, greedy: observes feature values, but selects actions greedily.

Our method is the Dynamic, non-myopic policy: observes feature values,
and has plans ahead.
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[Figure from Deng et al. CVPR 2012]
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