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| ocal Features

® Gradient energy histograms by orientation
and grid position in local patches.

® (Coded and used in bag-of-words or spatial
model classifiers.




Feature Coding

® Traditionally vector quantized as visual
words.

® But coding as mixture of components, such
as in sparse coding, is empirically better.

(Yang et al. 2009)
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picture from Bruno Olshausen



Another motivation:
additive image formation

Fritz et al. An Additive Latent Feature Model for Transparent Object Recognition. NIPS (2009).
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Hierarchies

for increasing spatial
support and complexity of visual pathway.

® | ocal features not robust to
Higher layers can help resolve.

® Efficient parametrization possible due to
of lower-layer components.




Past VVork

HMAX models (Riesenhuber and Poggio 1999, Mutch and
Lowe 2008)

Convolutional networks (Ranzato et al. 2007, Ahmed et al.
2009)

Deep Belief Nets (Hinton 2007/, Lee et al. 2009)
Hyperfeatures (Agarwal and Triggs 2008)
Fragment-based hierarchies (Ullman 2007)
Stochastic grammars (Zhu and Mumford 2006)

Compositional object representations (Fidler and Leonardis
2007, Zhu et al. 2008)
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Convolutional
Deep Belief
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Figure 1. Convolutional RBM with probabilistic max-
pooling. For simplicity, only group k of the detection layer
and the pooing layer are shown. The basic CRBM corre-
sponds to a simplified structure with only visible layer and
detection (hidden) layer. See text for details.

Stacked layers, each consisting of
feature extraction,
transformation, and pooling.
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Lee et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical ....
Proceedings of the 26th Annual International Conference on Machine Learning (2009)




Hyperfeatures
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Agarwal and Triggs. Multilevel Image Coding with Hyperfeatures. International Journal of
Computer Vision (2008).




Compositional
Representations

Fidler and Leonardis. Towards Scalable Representations of Object Categories: Learning a Hierarchy of
Parts. CVPR (2007)
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Bayesian inference

® The human visual cortex
deals with inherently
ambiguous data.

Role of priors and

inference (Lee and
Mumford 2003).
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Kersten et al. Object perception as Bayesian
inference. Annual Reviews (2004)




® But most hierarchical approaches do both

learning and inference only from the
bottom-up.
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What we would like

® Distributed coding of local

features in a hierarchical
model that would allow fu!!
inference.
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Our model: rLDA

® Based on Latent
Dirichlet Allocation
(LDA).

Multiple layers, with
increasing spatial
support.
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Latent Dirichlet Allocation

® Bayesian multinomial
mixture model originally

formulated for text analysis. |
Ny,

Blei et al. Latent Dirichlet allocation. Journal of Machine Learning Research (2003)




Latent Dirichlet Allocation

Corpus-wide, the multinomial distributions of
words (topics) are sampled:

e ¢~ Dir(B)

For each document, d € 1,..., D, mixing propor-
tions A4 are sampled according to:

o Ol ~ Dir(«a)

And Ny words w are sampled according to:

o 2z ~ Mult(d9): sample topic given the
document-topic mixing proportions

o w~ Mult(¢®): sample word given the topic
and the topic-word multinomials




LDA in vision

® Past work has applied LDA to visual words,
with topics being distributions over them.
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Fei-Fei and Perona. A Bayesian Hierarchical Model for Learning Natural Scene Categories. CVPR (2005)




LDA-SIFT
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How training works

® (quantization, extracting patches, inference
illustration)
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Stacking two layers of LDA
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Recursive LDA

e ¢1 ~ Dir(f1) and ¢¢ ~ Dir(By): sample L; and L

multinomial parameters

e Y1 < ¢1 and xg < ¢ : compute spatial distributions
from mixture distributions

For each document, d € {1,..., D} top level mixing pro-
portions 6(®) are sampled according to:

o 0¥ ~ Dir(a) : sample top level mixing proportions

For each document d, N (% words w are sampled according
to:

o 21 ~ Mult(4(9) : sample L; mixture distribution
o I ~ Mult(xgzl")) : sample spatial position on L
given z1

20 ~ Mult(¢{*"**)) : sample Lo mixture distribution
given z1 and x% from L4

To ~ Mult(xo’zo")) . sample spatial position on L

given 2
w ~ Mult( (gzo’xo”)) : sample word given zg and z







Inference scheme

Gibbs sampling: sequential updates of
random variables with all others held
constant.

Linear topic response for initialization.
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Evaluation

® |6px SIFT, extracted densely every 6px;
max value normalized to 100 tokens

® [hree conditions:
*Single-layer LDA
X Feed-forward two-layer LDA (FLDA)
XRecursive two-layer LDA (RLDA)




RLDA > FLDA > LDA

Approach

Caltech-101

Model Basis size

Layer(s) used

15

30

128-dim
models

128
128t/128b

128t/128b
128t/128b
128t/128b
128t/128b

“bottom”
bottom

52.3 + 0.5%
55.2 + 0.3%
53.7 + 0.4%
55.4 + 0.5%
59.3 + 0.3%
57.8 + 0.8%
61.9 + 0.3%

58.7 + 1.1%
62.6 + 0.9%
60.5 + 1.0%
61.3 + 1.3%
66.0 + 1.2%
64.2 £ 1.0%
68.3 + 0.7%

® additional layer increases performance

® full inference increases performance




RLDA > FLDA > LDA
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® additional layer increases performance
® full inference increases performance

® using both layers increases performance




RLDA vs. other
hierarchies

Approach

Caltech-101

Model

Layer(s) used

15

30

Our Model

RLDA (1024t/128b)
RLDA (1024t/128b)
RLDA (1024t/128b)

bottom
top
both

56.6 + 0.8%
66.7 + 0.9%
67.4+0.5

62.7 £ 0.5%
72.6 £ 1.2%
73.7 £ 0.8%

Hierarchical
Models

Sparse-HMAX [21]

CNN [15]

CNN [15]

CNN + Transfer [2]
CDBN [17]

CDBN [17]
Hierarchy-of-parts [8]
Ommer and Buhmann [23]

top
bottom

top

top

51.0%

58.1%
53.2 £ 1.2%
57.7 + 1.5%
60.5%

56.0%
57.6 £ 0.4%
66.3 + 1.5%
67.2%
60.5 + 1.1%
65.4 + 0.4%
66.5%
61.3 £ 0.9%




RLDA vs. single-feature
state-of-the-art

RLDA: 73.7%

Sparse-Coding Spatial Pyramid Matching: 73.2%
(Yang et al. CVPR 2009)

SCSPM with “macrofeatures” and denser sampling:
75.7% (Bouerau et al. CVPR 2010)

Locality-constrained Linear Coding: 73.4% (VWang et
al. CVPR 2010)

Saliency sampling + NBNN: 78.5% (Kanan and
Cottrell, CVPR 2010)




Bottom and top layers
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Conclusions

Presented Bayesian hierarchical approach to
modeling sparsely coded visual features of
increasing complexity and spatial support.

Showed value of full inference.




Future directions

Extend hierarchy to object level.
Direct discriminative component

Non-parametrics

Sparse Coding + LDA




