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Local Features

• Gradient energy histograms by orientation 
and grid position in local patches.

• Coded and used in bag-of-words or spatial 
model classifiers.



Feature Coding
• Traditionally vector quantized as visual 

words.

• But coding as mixture of components, such 
as in sparse coding, is empirically better. 
(Yang et al. 2009)Dense codes

(ascii)
Sparse, distributed codes Local codes

(grandmother cells)

. . . . . .

+ High combinatorial
   capacity (2N)

-  Difficult to read out

+ Decent combinatorial
   capacity (~NK)

+ Still easy to read out

-  Low combinatorial
   capacity (N)

+ Easy to read out

Local codes vs. Dense codes

picture from Bruno Olshausen



Another motivation: 
additive image formation

Fritz et al.  An Additive Latent Feature Model for Transparent Object Recognition. NIPS (2009).
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Hierarchies

• Biological evidence for increasing spatial 
support and complexity of visual pathway.

• Local features not robust to ambiguities. 
Higher layers can help resolve.

• Efficient parametrization possible due to 
sharing of lower-layer components.



Past Work
• HMAX models (Riesenhuber and Poggio 1999, Mutch and 

Lowe 2008)

• Convolutional networks (Ranzato et al. 2007, Ahmed et al. 
2009)

• Deep Belief Nets (Hinton 2007, Lee et al. 2009)

• Hyperfeatures (Agarwal and Triggs 2008)

• Fragment-based hierarchies (Ullman 2007)

• Stochastic grammars (Zhu and Mumford 2006)

• Compositional object representations (Fidler and Leonardis 
2007, Zhu et al. 2008)



HMAX
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lus (unless the afferents showed no overlap in space
or scale); consequently, excitation of the ‘complex’
cell would increase along with the stimulus size,
even though the afferents show size invariance!
(This is borne out in simulations using a simplified
two-layer model25.) For the MAX mechanism, how-
ever, cell response would show little variation, even as stimulus
size increased, because the cell’s response would be determined
just by the best-matching afferent.

These considerations (supported by quantitative simulations
of the model, described below) suggest that a nonlinear MAX
function represents a sensible way of pooling responses to achieve
invariance. This would involve implicitly scanning (see Discus-
sion) over afferents of the same type differing in the parameter
of the transformation to which responses should be invariant
(for instance, feature size for scale invariance), and then select-
ing the best-matching afferent. Note that these considerations
apply where different afferent to a pooling cell (for instance, those
looking at different parts of space), are likely to respond to dif-
ferent objects (or different parts of the same object) in the visu-
al field. (This is the case with cells in lower visual areas with their
broad shape tuning.) Here, pooling by combining afferents would

mix up signals caused by different stimuli. However, if the affer-
ents are specific enough to respond only to one pattern, as one
expects in the final stages of the model, then it is advantageous
to pool them using a weighted sum, as in the RBF network15,
where VTUs tuned to different viewpoints were combined to
interpolate between the stored views.

MAX-like mechanisms at some stages of the circuitry seem
compatible with neurophysiological data. For instance, when two
stimuli are brought into the receptive field of an IT neuron, that
neuron’s response seems dominated by the stimulus that, when
presented in isolation to the cell, produces a higher firing rate24—
just as expected if a MAX-like operation is performed at the level
of this neuron or its afferents. Theoretical investigations into pos-
sible pooling mechanisms for V1 complex cells also support a
maximum-like pooling mechanism (K. Sakai and S. Tanaka, Soc.
Neurosci. Abstr. 23, 453, 1997).

articles

View-tuned cells

MAX

weighted sum

Simple cells (S1)

Complex cells (C1)

Complex composite cells (C2)

Composite feature cells (S2)

Fig. 2. Sketch of the model. The model was an extension of
classical models of complex cells built from simple cells4,
consisting of a hierarchy of layers with linear (‘S’ units in the
notation of Fukushima6, performing template matching, solid
lines) and non-linear operations (‘C’ pooling units6, perform-
ing a ‘MAX’ operation, dashed lines). The nonlinear MAX
operation—which selected the maximum of the cell’s inputs
and used it to drive the cell—was key to the model’s proper-
ties, and differed from the basically linear summation of
inputs usually assumed for complex cells. These two types of
operations provided pattern specificity and invariance to
translation, by pooling over afferents tuned to different posi-
tions, and to scale (not shown), by pooling over afferents
tuned to different scales.

Fig. 3. Highly nonlinear shape-tuning properties of the MAX mechanism. (a) Experimentally observed responses of IT cells obtained using a ‘simplifi-
cation procedure’26 designed to determine ‘optimal’ features (responses normalized so that the response to the preferred stimulus is equal to 1). In
that experiment, the cell originally responded quite strongly to the image of a ‘water bottle’ (leftmost object). The stimulus was then ‘simplified’ to its
monochromatic outline, which increased the cell’s firing, and further, to a paddle-like object consisting of a bar supporting an ellipse. Whereas this
object evoked a strong response, the bar or the ellipse alone produced almost no response at all (figure used by permission). (b) Comparison of
experiment and model. White bars show the responses of the experimental neuron from (a). Black and gray bars show the response of a model neu-
ron tuned to the stem-ellipsoidal base transition of the preferred stimulus. The model neuron is at the top of a simplified version of the model shown
in Fig. 2, where there were only two types of S1 features at each position in the receptive field, each tuned to the left or right side of the transition
region, which fed into C1 units that pooled them using either a MAX function (black bars) or a SUM function (gray bars). The model neuron was con-
nected to these C1 units so that its response was maximal when the experimental neuron’s preferred stimulus was in its receptive field.
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Convolutional 
Deep Belief 

Nets
Stacked layers, each consisting of 

feature extraction, 
transformation, and pooling.

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

(NW � NV − NH + 1); the filter weights are shared
across all the hidden units within the group. In addi-
tion, each hidden group has a bias bk and all visible
units share a single bias c.

We define the energy function E(v,h) as:
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Using the operators defined previously,
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As with standard RBMs (Section 2.1), we can perform
block Gibbs sampling using the following conditional
distributions:

P (hk

ij
= 1|v) = σ((W̃ k ∗ v)ij + bk)

P (vij = 1|h) = σ((
�

k

W
k ∗ h

k)ij + c),

where σ is the sigmoid function. Gibbs sampling forms
the basis of our inference and learning algorithms.

3.3. Probabilistic max-pooling
In order to learn high-level representations, we stack
CRBMs into a multilayer architecture analogous to
DBNs. This architecture is based on a novel opera-
tion that we call probabilistic max-pooling.

In general, higher-level feature detectors need informa-
tion from progressively larger input regions. Existing
translation-invariant representations, such as convolu-
tional networks, often involve two kinds of layers in
alternation: “detection” layers, whose responses are
computed by convolving a feature detector with the
previous layer, and “pooling” layers, which shrink the
representation of the detection layers by a constant
factor. More specifically, each unit in a pooling layer
computes the maximum activation of the units in a
small region of the detection layer. Shrinking the rep-
resentation with max-pooling allows higher-layer rep-
resentations to be invariant to small translations of the
input and reduces the computational burden.

Max-pooling was intended only for feed-forward archi-
tectures. In contrast, we are interested in a generative
model of images which supports both top-down and
bottom-up inference. Therefore, we designed our gen-
erative model so that inference involves max-pooling-
like behavior.
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Figure 1. Convolutional RBM with probabilistic max-
pooling. For simplicity, only group k of the detection layer
and the pooing layer are shown. The basic CRBM corre-
sponds to a simplified structure with only visible layer and
detection (hidden) layer. See text for details.

To simplify the notation, we consider a model with a
visible layer V , a detection layer H, and a pooling layer
P , as shown in Figure 1. The detection and pooling
layers both have K groups of units, and each group
of the pooling layer has NP × NP binary units. For
each k ∈ {1, ...,K}, the pooling layer P

k shrinks the
representation of the detection layer H

k by a factor
of C along each dimension, where C is a small in-
teger such as 2 or 3. I.e., the detection layer H

k is
partitioned into blocks of size C × C, and each block
α is connected to exactly one binary unit p

k

α in the
pooling layer (i.e., NP = NH/C). Formally, we define
Bα � {(i, j) : hij belongs to the block α.}.

The detection units in the block Bα and the pooling
unit pα are connected in a single potential which en-
forces the following constraints: at most one of the
detection units may be on, and the pooling unit is on
if and only if a detection unit is on. Equivalently, we
can consider these C

2+1 units as a single random vari-
able which may take on one of C

2 + 1 possible values:
one value for each of the detection units being on, and
one value indicating that all units are off.

We formally define the energy function of this simpli-
fied probabilistic max-pooling-CRBM as follows:

E(v,h) = −
X

k
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We now discuss sampling the detection layer H and
the pooling layer P given the visible layer V . Group k

receives the following bottom-up signal from layer V :

I(hk

ij
) � bk + (W̃ k ∗ v)ij . (2)

Now, we sample each block independently as a multi-
nomial function of its inputs. Suppose h

k

i,j
is a hid-

den unit contained in block α (i.e., (i, j) ∈ Bα), the

611

Lee et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical …. 
Proceedings of the 26th Annual International Conference on Machine Learning (2009)



Hyperfeatures
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Fig. 1 Constructing a hyperfeature stack. The ‘level 0’ (base fea-
ture) pyramid is constructed by calculating a local image descriptor
vector for each patch in a multiscale pyramid of overlapping image
patches. These vectors are vector quantized according to the level 0
codebook, and local histograms of codebook memberships are accu-
mulated over local position-scale neighborhoods (the smaller darkened
regions within the image pyramids) to make the level 1 feature vectors.
Other local accumulation schemes can be used, such as soft voting or

more generally capturing local statistics using posterior membership
probabilities of mixture components or similar latent models. Softer
spatial windowing is also possible. The process simply repeats itself at
higher levels. The level l to l + 1 coding is also used to generate the
level l output vectors—global histograms over the whole level-l pyra-
mid. The collected output features are fed to a learning machine and
used to classify the (local or global) image region

and HMAX (Riesenhuber and Poggio 1999; Serre et al.
2005; Mutch and Lowe 2006). These are all multilayer net-
works with alternating stages of linear filtering (banks of
learned convolution filters for CNN’s and of learned ‘sim-
ple cells’ for HMAX and the neocognitron) and nonlin-
ear rectify-and-pool operations. The neocognitron activates
a higher level cell if at least one associated lower level
cell is active. In CNNs the rectified signals are pooled
linearly, while in HMAX a max-like operation (‘complex
cell’) is used so that only the dominant input is passed
through to the next stage. The neocognitron and HMAX
lay claims to biological plausibility whereas CNN is more
of an engineering solution, but all three are convolution-
based discriminatively-trained models. In contrast, although
hyperfeatures are still bottom-up, they are essentially a de-
scriptive statistics model not a discriminative one: train-
ing is completely unsupervised and there are no convolu-
tion weights to learn for hyperfeature extraction, although
the object classes can still influence the coding indirectly
via the choices of codebook. The basic nonlinearity is also
different: for hyperfeatures, nonlinear descriptor coding by
nearest neighbor lookup (or more generally by evaluat-
ing posterior probabilities of membership to latent feature
classes) is followed by a comparatively linear accumulate-

and-normalize process, while for the neural models linear
convolution filtering is followed by simple but nonlinear rec-
tification.

A number of other hierarchical feature representations
have been proposed very recently. Some of these, e.g. (Serre
et al. 2005; Mutch and Lowe 2006), follow the HMAX
model of object recognition in the primal cortex while others
such as (Epshtein and Ullman 2005) are based on top-down
methods of successively breaking top-level image fragments
into smaller components to extract informative features.
This does not allow higher levels to abstract from the fea-
tures at lower levels. Another top-down approach presented
in (Lazebnik et al. 2006) is based on pyramid matching that
repeatedly subdivides the image to compute histograms at
various levels. Again, unlike the hyperfeatures that we pro-
pose in this paper, this does not feed lower level features
into the computational process of higher ones. Hyperfea-
tures are literally “features of (local sets of) features”, and
this differentiates them from such methods. Another key
distinction of hyperfeatures is that they are based on local
co-occurrence alone, not on numerical geometry (although
quantitative spatial relationships are to some extent captured
by coding sets of overlapping patches). Advantages of this
are discussed in Sect. 3.

Agarwal and Triggs. Multilevel Image Coding with Hyperfeatures. International Journal of 
Computer Vision (2008).



Compositional 
Representations
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Bayesian inference
• The human visual cortex 

deals with inherently 
ambiguous data.

• Role of priors and 
inference (Lee and 
Mumford 2003).

C-2 KERSTEN  ! MAMASSIAN  ! YUILLE

See legend on next page
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inference. Annual Reviews (2004)



• But most hierarchical approaches do both 
learning and inference only from the 
bottom-up.
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What we would like

•Distributed coding of local 
features in a hierarchical 
model that would allow full 
inference.
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Our model: rLDA

• Based on Latent 
Dirichlet Allocation 
(LDA).

• Multiple layers, with 
increasing spatial 
support.

• Learns 
representation 
jointly across layers.
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Wednesday, December 2, 2009

Latent Dirichlet Allocation

• Bayesian multinomial 
mixture model originally 
formulated for text analysis.

Blei et al. Latent Dirichlet allocation. Journal of Machine Learning Research (2003)
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Latent Dirichlet Allocation
Corpus-wide, the multinomial distributions of
words (topics) are sampled:

• φ ∼ Dir(β)

For each document, d ∈ 1, . . . , D, mixing propor-
tions θ(d) are sampled according to:

• θ(d) ∼ Dir(α)

And Nd words w are sampled according to:

• z ∼ Mult(θ(d)): sample topic given the
document-topic mixing proportions

• w ∼ Mult(φ(z): sample word given the topic
and the topic-word multinomials



LDA in vision
• Past work has applied LDA to visual words, 

with topics being distributions over them.
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Figure 5. Internal structure of the models learnt for each cat-
egory. Each row represents one category. The left panel shows
the distribution of the 40 intermediate themes. The right panel
shows the distribution of codewords as well as the appearance of
10 codewords selected from the top 20 most likely codewords for
this category model.
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Figure 6. Examples of testing images for each category. Each
row is for one category. The first 3 columns on the left show 3
examples of correctly recognized images, the last column on the
right shows an example of incorrectly recognized image. Super-
imposed on each image, we show samples of patches that belong
to the most significant set of codewords given the category model.
Note for the incorrectly categorized images, the number of signifi-
cant codewords of the model tends to occur less likely. (This figure
is best viewed in color.)6

Fei-Fei and Perona. A Bayesian Hierarchical Model for Learning Natural Scene Categories. CVPR (2005)



LDA-SIFT
Distinctive Image Features from Scale-Invariant Keypoints 101

Figure 7. A keypoint descriptor is created by first computing the gradient magnitude and orientation at each image sample point in a region
around the keypoint location, as shown on the left. These are weighted by a Gaussian window, indicated by the overlaid circle. These samples
are then accumulated into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with the length of each
arrow corresponding to the sum of the gradient magnitudes near that direction within the region. This figure shows a 2 × 2 descriptor array
computed from an 8 × 8 set of samples, whereas the experiments in this paper use 4 × 4 descriptors computed from a 16 × 16 sample array.

6.1. Descriptor Representation

Figure 7 illustrates the computation of the keypoint de-
scriptor. First the image gradient magnitudes and ori-
entations are sampled around the keypoint location,
using the scale of the keypoint to select the level of
Gaussian blur for the image. In order to achieve ori-
entation invariance, the coordinates of the descriptor
and the gradient orientations are rotated relative to
the keypoint orientation. For efficiency, the gradients
are precomputed for all levels of the pyramid as de-
scribed in Section 5. These are illustrated with small
arrows at each sample location on the left side of
Fig. 7.

A Gaussian weighting function with σ equal to one
half the width of the descriptor window is used to as-
sign a weight to the magnitude of each sample point.
This is illustrated with a circular window on the left
side of Fig. 7, although, of course, the weight falls
off smoothly. The purpose of this Gaussian window is
to avoid sudden changes in the descriptor with small
changes in the position of the window, and to give less
emphasis to gradients that are far from the center of the
descriptor, as these are most affected by misregistration
errors.

The keypoint descriptor is shown on the right side
of Fig. 7. It allows for significant shift in gradient po-
sitions by creating orientation histograms over 4 × 4
sample regions. The figure shows eight directions for
each orientation histogram, with the length of each ar-
row corresponding to the magnitude of that histogram
entry. A gradient sample on the left can shift up to 4
sample positions while still contributing to the same

histogram on the right, thereby achieving the objective
of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which
the descriptor abruptly changes as a sample shifts
smoothly from being within one histogram to another
or from one orientation to another. Therefore, trilin-
ear interpolation is used to distribute the value of each
gradient sample into adjacent histogram bins. In other
words, each entry into a bin is multiplied by a weight of
1−d for each dimension, where d is the distance of the
sample from the central value of the bin as measured
in units of the histogram bin spacing.

The descriptor is formed from a vector containing
the values of all the orientation histogram entries, cor-
responding to the lengths of the arrows on the right side
of Fig. 7. The figure shows a 2 × 2 array of orienta-
tion histograms, whereas our experiments below show
that the best results are achieved with a 4 × 4 array of
histograms with 8 orientation bins in each. Therefore,
the experiments in this paper use a 4 × 4 × 8 = 128
element feature vector for each keypoint.

Finally, the feature vector is modified to reduce the
effects of illumination change. First, the vector is nor-
malized to unit length. A change in image contrast in
which each pixel value is multiplied by a constant will
multiply gradients by the same constant, so this contrast
change will be canceled by vector normalization. A
brightness change in which a constant is added to each
image pixel will not affect the gradient values, as they
are computed from pixel differences. Therefore, the de-
scriptor is invariant to affine changes in illumination.
However, non-linear illumination changes can also oc-
cur due to camera saturation or due to illumination

token
count

words



How training works

• (quantization, extracting patches, inference 
illustration)
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(a) Recursive LDA model concept.
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(b) Graphical model for RLDA.

Figure 2: Recursive LDA model.

3. Recursive LDA Model

In contrast to previous approaches to latent factor mod-

eling, we formulate a layered approach that derives progres-

sively higher-level spatial distributions based on the under-

lying latent activations of the lower layer.

For clarity, we will first derive this model for two layers

(L0 and L1) as shown in Figure 2a, but will show how it

generalizes to an arbitrary number of layers. For illustra-

tion purposes, the reader may visualize a particular instance

of our model that observes SIFT descriptors (such as the L0

patch in Figure 2a) as discrete spatial distributions on the

L0-layer. In this particular case, L0 layer models the dis-

tribution of words from a vocabulary of size V = 8 over a

spatial grid X0 of size 4× 4. The vocabulary represents the

8 gradient orientations used by the SIFT descriptor, which

we interpret as words. The frequency of these words is then

the histogram energy in the corresponding bin of the SIFT

descriptor.

The mixture model of T0 components is parameterized

by multinomial parameters φ0 ∈ RT0×X0×V
; in our partic-

ular example φ0 ∈ RT0×(4×4)×8
. The L1 aggregates the

mixing proportions obtained at layer L0 over a spatial grid

X1 to an L1 patch. In contrast to the L0 layer, L1 mod-

els a spatial distribution over L0 components. The mixture

model of T1 components at layer L1 is parameterized by

multinomial parameters φ1 ∈ RT1×X1×T0 .

The spatial grid is considered to be deterministic at each

layer and position variables for each word x are observed.

However, the distribution of words / topics over the grid is

not uniform and may vary across different components. We

thus have to introduce a spatial (multinomial) distribution χ
at each layer which is computed from the mixture distribu-

tion φ. This is needed to define a full generative model.

The base model for a single layer (with T1 = 0) is equiv-

alent to LDA, which is therefore a special case of our nested

approach.

3.1. Generative Process

Given symmetric Dirichlet priors α,β0,β1 and a fixed

choice of the number of mixture components T0 and T1 for

layer L1 and L0 respectively, we define the following gener-

ative process which is also illustrated in Figure 2b. Mixture

distributions are sampled globally according to:

• φ1 ∼ Dir(β1) and φ0 ∼ Dir(β0): sample L1 and L0

multinomial parameters

• χ1 ← φ1 and χ0 ← φ0 : compute spatial distributions

from mixture distributions

For each document, d ∈ {1, . . . , D} top level mixing pro-

portions θ(d) are sampled according to:

• θ(d) ∼ Dir(α) : sample top level mixing proportions

For each document d, N (d)
words w are sampled according

to:

• z1 ∼ Mult(θ(d)) : sample L1 mixture distribution

• x1 ∼ Mult(χ(z1,·)
1 ) : sample spatial position on L1

given z1
• z0 ∼ Mult(φ(z1,x1,·)

1 ) : sample L0 mixture distribution

given z1 and x1 from L1

• x0 ∼ Mult(χ(z0,·)
0 ) : sample spatial position on L0

given z0
• w ∼ Mult(φ(z0,x0,·)

0 ) : sample word given z0 and x0

According to the proposed generative process, the joint dis-

tribution of the model parameters given the hyperparame-

3

Recursive LDA
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Inference scheme

• Gibbs sampling: sequential updates of 
random variables with all others held 
constant.

• Linear topic response for initialization.



Outline

• Motivation:

✴Distributed coding of local image features

✴Hierarchical models

✴Value of Bayesian inference

• Our model: Recursive LDA

• Evaluation



Evaluation

• 16px SIFT, extracted densely every 6px; 
max value normalized to 100 tokens

• Three conditions:

✴Single-layer LDA

✴Feed-forward two-layer LDA (FLDA)

✴Recursive two-layer LDA (RLDA)



RLDA > FLDA > LDA540
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Table 2: Results for different implementations of our model with 128 components at L0 and 128 components at L1.

Approach Caltech-101

Model Basis size Layer(s) used 15 30

128-dim

models

LDA 128 “bottom” 52.3± 0.5% 58.7± 1.1%
RLDA 128t/128b bottom 55.2± 0.3% 62.6± 0.9%
LDA 128 “top” 53.7± 0.4% 60.5± 1.0%
FLDA 128t/128b top 55.4± 0.5% 61.3± 1.3%
RLDA 128t/128b top 59.3± 0.3% 66.0± 1.2%
FLDA 128t/128b both 57.8± 0.8% 64.2± 1.0%
RLDA 128t/128b both 61.9± 0.3% 68.3± 0.7%
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(a) Caltech-101: 128 topic models, LDA-SIFT vs FLDA vs RLDA
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(b) Caltech-101: 128 topic models, L2 vs L1+L2 models

Figure 4: Comparison of classification rates on Caltech-101 of the one-layer model (LDA-SIFT) with the feed-forward

(FLDA) and full generative (RLDA) two-layer models for different number of training examples, all trained with 128 at L0

and 128 at L1 layers. We also compare to the stacked L0 and L1 layers for both FLDA and RLDA, which performed the best.

SIFT model trained with 128 topics, obtaining respective

classification rates of 61.3% and 66.0%, compared to the

LDA-SIFT result of 58.7%. Detailed results across differ-

ent numbers of training examples are shown in Figure 4a.

The curves show that the RLDA model consistently outper-

forms the feed-forward FLDA model, which in turn outper-

forms the one-layer LDA-SIFT model. This is due to the

fact that RLDA has learned more complex spatial structures

(the learned vocabularies are presented in Figure 5).

To show that the increased performance of the second

layer is not only due to a larger spatial support of the fea-

tures, we have also ran the baseline LDA on the bigger,

16 × 16 grid, which is the size of the spatial support of

the RLDA and FLDA models. The performance, reported

in Table 2 under LDA “top” is 60.6% which is less than

FLDA and RLDA, which further demonstrates the neces-

sity of having multi-layered representations.

We have also tested the classification performance on

stacking L0 and L1 features which contains more informa-

tion (spatially larger as well as smaller features are taken

into account this way), which is a standard practice for hi-

erarchical models [17]. The results are presented in Table 2

(under “both”) and Figure 4b, showing that using informa-

tion from both layers facilitates discrimination.

We have further tested the performance of the first layer

(L0) obtained within the RLDA model and compared it with

the single-layer model of LDA-SIFT. Interestingly, the L0

learned with the RLDA model outperforms just the bottom-

up single layer model (62.6% vs 58.7%), demonstrating that

learning the layers jointly is beneficial for the performance

of both, bottom as well as the top layers. However, for

the RLDA model with 1024 L1 and 128 L0 components,

the performance of the bottom (L0) layer performed only

slightly better as the L0 layer of the 128 L1 / 128 L0 RLDA

model, achieving 62.7% vs 62.6%, which seems to be the

saturation point for the 128 bottom layer.

Following this evaluation, we learned two-layer models

with 1024 topics in the top layer and 128 in the bottom layer,

6

• additional layer increases performance

• full inference increases performance



RLDA > FLDA > LDA
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• additional layer increases performance

• full inference increases performance

• using both layers increases performance



RLDA vs. other 
hierarchies
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p(w, z0,1|x0,1,α,β0,1) =
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χ1

�
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θ
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θ
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Figure 3: RLDA conditional probabilities for a two-layer model, which is then generalized to an L-layer model.

Table 1: Comparison of the top performing RLDA with 128 components at L0 and 1024 components at layer L1 to other
hierarchical approaches. “bottom” is used to denote the L0 features of the RLDA model, “top” for L1 features, while “both”
denotes stacked features from L0 and L1 layers.

Approach Caltech-101
Model Layer(s) used 15 30

Our Model
RLDA (1024t/128b) bottom 56.6± 0.8% 62.7± 0.5%
RLDA (1024t/128b) top 66.7± 0.9% 72.6± 1.2%
RLDA (1024t/128b) both 67.4± 0.5 73.7± 0.8%

Hierarchical
Models

Sparse-HMAX [21] top 51.0% 56.0%
CNN [15] bottom – 57.6± 0.4%
CNN [15] top – 66.3± 1.5%
CNN + Transfer [2] top 58.1% 67.2%
CDBN [17] bottom 53.2± 1.2% 60.5± 1.1%
CDBN [17] both 57.7± 1.5% 65.4± 0.4%
Hierarchy-of-parts [8] both 60.5% 66.5%
Ommer and Buhmann [23] top – 61.3± 0.9%

Caltech-101 evaluations. A spatial pyramid with 3 layers
of square grids of 1, 2, and 4 cells each was always con-
structed on top of our features. Guided by the best practices
outlined in a recent comparison of different pooling and fac-
torization functions [5], we used max pooling for the spatial
pyramid aggregation. For classification, we used a linear
SVM, following the state-of-the-art results of Yang et al.
[31]. Caltech-101 is a dataset comprised of 101 object cat-
egories, with differing numbers of images per category [7].
Following standard procedure, we use 30 images per cat-
egory for training and the rest for testing. Mean accuracy
and standard deviation are reported for 8 runs over different
splits of the data, normalized per class.

We first tested a one-layer LDA over SIFT features.
For 128 components we obtain classification accuracy of
58.7%. Performance increases as we increase the number

of components, demonstrating the lack of discrimination of
the baseline LDA-SIFT model: for 1024 topics the perfor-
mance is 68.8% and 70.4% if we used 2048 topics.

The main emphasis of our experiments is to evaluate
the contribution of additional layers to classification perfor-
mance. We tested models FLDA and RLDA (described in
4.1) in the same regime as described above.

As an initial experiment, we constrained the number
of topics to 128 and trained three models: single-layer,
FLDA, and RLDA. The two-layer models were trained with
128 topics on the bottom layer, corresponding to factorized
SIFT descriptors, and 128 on the top. Only the top-layer
topics were used for classification, so the effective total
number of topics in the two-layer models was the same as
the single-layer model. We present the results in Table 2.
Both two-layer models improved on the one-layer LDA-

5



RLDA vs. single-feature 
state-of-the-art

• RLDA: 73.7%

• Sparse-Coding Spatial Pyramid Matching: 73.2% 
(Yang et al. CVPR 2009)

• SCSPM with “macrofeatures” and denser sampling: 
75.7% (Bouerau et al. CVPR 2010)

• Locality-constrained Linear Coding: 73.4% (Wang et 
al. CVPR 2010)

• Saliency sampling + NBNN: 78.5% (Kanan and 
Cottrell, CVPR 2010)



FLDA 128t/128b

RLDA 128t/128b

Top Bottom

Bottom and top layers



Conclusions

• Presented Bayesian hierarchical approach to 
modeling sparsely coded visual features of 
increasing complexity and spatial support.

• Showed value of full inference.



Future directions

• Extend hierarchy to object level.

• Direct discriminative component

• Non-parametrics

• Sparse Coding + LDA


