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Our goal: distributed coding of local features in a hierarchical model that would
allow full inference.

Motivation

Considering local patch gradient energy histograms by orientation and grid loca-
tion.

• Traditionally, vector quantized as visual words.
• Coding as a mixture of components has been shown to be empirically better.
• May represent additive image formation.

Feature Coding
• Traditionally vector quantized as visual 

words.

• But coding as mixture of components, such 
as in sparse coding, is empirically better. 
(Yang et al. 2009)Dense codes

(ascii)
Sparse, distributed codes Local codes

(grandmother cells)

. . . . . .

+ High combinatorial
   capacity (2N)

-  Difficult to read out

+ Decent combinatorial
   capacity (~NK)

+ Still easy to read out

-  Low combinatorial
   capacity (N)

+ Easy to read out

Local codes vs. Dense codes

picture from Bruno Olshausen

Feature Coding
• Traditionally vector quantized as visual 

words.

• But coding as mixture of components, such 
as in sparse coding, is empirically better. 
(Yang et al. 2009)Dense codes

(ascii)
Sparse, distributed codes Local codes

(grandmother cells)

. . . . . .

+ High combinatorial
   capacity (2N)

-  Difficult to read out

+ Decent combinatorial
   capacity (~NK)

+ Still easy to read out

-  Low combinatorial
   capacity (N)

+ Easy to read out

Local codes vs. Dense codes

picture from Bruno Olshausen

Monday, June 13, 2011

Another motivation: 
additive image formation

Fritz et al.  An Additive Latent Feature Model for Transparent Object Recognition. NIPS (2009).

Distributed Coding

• Biological evidence for increasing spatial support and complexity of visual path-
way.

• Higher layers can help resolve local ambiguities.
• Possibly fewer parameters due to sharing of lower-layer components.
• Lots of past work in vision: HMAX, Convolutional Deep Belief Nets, Hyperfea-

tures, Hierarchies of Parts.

Hierarchical Models

• Visual systems deal with inherently ambiguous data, which Bayesian inference
helps disambiguate.

• Hierarchical priors allow unsupervised learning of complex visual structures.

Bayesian inference
• The human visual cortex 

deals with inherently 
ambiguous data.

• Role of priors and 
inference (Lee and 
Mumford 2003).
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Kersten et al. Object perception as Bayesian 
inference. Annual Reviews (2004)

Bayesian Inference

We formulate the Recursive LDA toward these goals.

• Based on Latent Dirichlet Allocation for distributed coding.
• Multiple layers in the hierarchy, with increasing spatial support.
• Unlike most hierarchical models, learns and does inference jointly across layers.
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Visualization of learned components. RLDA learns more complex features at both layers.
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(a) Recursive LDA model concept.
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(b) Graphical model for RLDA.

Figure 2: Recursive LDA model.

3. Recursive LDA Model

In contrast to previous approaches to latent factor mod-
eling, we formulate a layered approach that derives progres-
sively higher-level spatial distributions based on the under-
lying latent activations of the lower layer.

For clarity, we will first derive this model for two layers
(L0 and L1) as shown in Figure 2a, but will show how it
generalizes to an arbitrary number of layers. For illustra-
tion purposes, the reader may visualize a particular instance
of our model that observes SIFT descriptors (such as the L0

patch in Figure 2a) as discrete spatial distributions on the
L0-layer. In this particular case, L0 layer models the dis-
tribution of words from a vocabulary of size V = 8 over a
spatial grid X0 of size 4× 4. The vocabulary represents the
8 gradient orientations used by the SIFT descriptor, which
we interpret as words. The frequency of these words is then
the histogram energy in the corresponding bin of the SIFT
descriptor.

The mixture model of T0 components is parameterized
by multinomial parameters φ0 ∈ RT0×X0×V ; in our partic-
ular example φ0 ∈ RT0×(4×4)×8. The L1 aggregates the
mixing proportions obtained at layer L0 over a spatial grid
X1 to an L1 patch. In contrast to the L0 layer, L1 mod-
els a spatial distribution over L0 components. The mixture
model of T1 components at layer L1 is parameterized by
multinomial parameters φ1 ∈ RT1×X1×T0 .

The spatial grid is considered to be deterministic at each
layer and position variables for each word x are observed.
However, the distribution of words / topics over the grid is
not uniform and may vary across different components. We
thus have to introduce a spatial (multinomial) distribution χ
at each layer which is computed from the mixture distribu-
tion φ. This is needed to define a full generative model.

The base model for a single layer (with T1 = 0) is equiv-
alent to LDA, which is therefore a special case of our nested
approach.

3.1. Generative Process

Given symmetric Dirichlet priors α, β0, β1 and a fixed
choice of the number of mixture components T0 and T1 for
layer L1 and L0 respectively, we define the following gener-
ative process which is also illustrated in Figure 2b. Mixture
distributions are sampled globally according to:

• φ1 ∼ Dir(β1) and φ0 ∼ Dir(β0): sample L1 and L0

multinomial parameters
• χ1 ← φ1 and χ0 ← φ0 : compute spatial distributions

from mixture distributions

For each document, d ∈ {1, . . . , D} top level mixing pro-
portions θ(d) are sampled according to:

• θ(d) ∼ Dir(α) : sample top level mixing proportions

For each document d, N (d) words w are sampled according
to:

• z1 ∼ Mult(θ(d)) : sample L1 mixture distribution
• x1 ∼ Mult(χ(z1,·)

1 ) : sample spatial position on L1

given z1

• z0 ∼ Mult(φ(z1,x1,·)
1 ) : sample L0 mixture distribution

given z1 and x1 from L1

• x0 ∼ Mult(χ(z0,·)
0 ) : sample spatial position on L0

given z0

• w ∼ Mult(φ(z0,x0,·)
0 ) : sample word given z0 and x0

According to the proposed generative process, the joint dis-
tribution of the model parameters given the hyperparame-
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Recursive LDA

Model
Setting in line with previous experiments on image coding:
• Evaluation on Caltech101
• Spatial Max Pooling
• Linear SVM classification

Three conditions:
• Single-layer LDA, on small and large patches (“bottom” and “top”)
• Feed-forward two-layer LDA (FLDA)
• Recursive two-layer LDA (RLDA)

Table 1: Comparison of RLDA with 128 components at layer L1 and 1024 components at layer L2 to other hierarchical
approaches. Under layers, “bottom” refers to the L1 features of the RLDA model, “top” to L2 features, and “both” denotes
the feature obtained by stacking both layers.

Approach Caltech-101
Model Layer(s) used 15 30

Our Model
RLDA (1024t/128b) bottom 56.6 ± 0.8% 62.7 ± 0.5%
RLDA (1024t/128b) top 66.7 ± 0.9% 72.6 ± 1.2%
RLDA (1024t/128b) both 67.4 ± 0.5 73.7 ± 0.8%

Hierarchical
Models

Sparse-HMAX [22] top 51.0% 56.0%
CNN [16] bottom – 57.6 ± 0.4%
CNN [16] top – 66.3 ± 1.5%
CNN + Transfer [2] top 58.1% 67.2%
CDBN [18] bottom 53.2 ± 1.2% 60.5 ± 1.1%
CDBN [18] both 57.7 ± 1.5% 65.4 ± 0.4%
Hierarchy-of-parts [8] both 60.5% 66.5%
Ommer and Buhmann [24] top – 61.3 ± 0.9%

Table 2: Results for different implementations of our model with 128 components at layer L1 and 128 components at L2.
For LDA models, “bottom” refers to using SIFT patches as input, while “top” refers to using 4 × 4 SIFT superpatches.

Approach Caltech-101
Model Basis size Layer(s) used 15 30

128-dim
models

LDA 128 “bottom” 52.3 ± 0.5% 58.7 ± 1.1%
RLDA 128t/128b bottom 55.2 ± 0.3% 62.6 ± 0.9%
LDA 128 “top” 53.7 ± 0.4% 60.5 ± 1.0%
FLDA 128t/128b top 55.4 ± 0.5% 61.3 ± 1.3%
RLDA 128t/128b top 59.3 ± 0.3% 66.0 ± 1.2%
FLDA 128t/128b both 57.8 ± 0.8% 64.2 ± 1.0%
RLDA 128t/128b both 61.9 ± 0.3% 68.3 ± 0.7%

ual descriptors were processed by our probabilistic mod-
els, and results of inference were used in a classification
framework described in section 4.2. Because LDA requires
discrete count data and SIFT dimensions are continuous-
valued, normalization of the maximum SIFT value to 100
tokens was performed; this level of quantization was shown
to maintain sufficient information about the descriptor.

We trained and compared the following three types of
models:

1. LDA: LDA models with various numbers of compo-
nents (128, 1024, and 2048) trained on 20K randomly
extracted SIFT patches. We also trained LDA models
on “superpatches” consisting of 4×4 SIFT patches, to
give the same spatial support as our two-layer models.

2. FLDA: The feed-forward model first trains an LDA
model on SIFT patches, as above. Topic activations
are output and assembled as 4 × 4 superpatches. An-
other LDA model is learned on this input. We tested

128 components at the bottom layer, and 128 and 1024
components at the top layer.

3. RLDA: The full model was trained on the same size
patches as FLDA described above: SIFT descriptors in
a 4×4 spatial arrangement, with model parameters set
accordingly. We tested 128 components at the bottom,
and 128 and 1024 components at the top layer.

4.2. Evaluation

The setup of our classification experiments follows the
Spatial Pyramid Match, a commonly followed approach in
Caltech-101 evaluations [17]. A spatial pyramid with 3 lay-
ers of 4 × 4, 2 × 2, and 1 × 1 grids was constructed on
top of our features. Guided by the best practices outlined
in a recent comparison of different pooling and factoriza-
tion functions [5], we used max pooling for the spatial pyra-
mid aggregation. For classification, we used a linear SVM,
following the state-of-the-art results of Yang et al. [32].
Caltech-101 is a dataset comprised of 101 object categories,
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Results:
• Additional layer increases performance (FLDA > LDA).
• Full inference increases performance (RLDA > FLDA).
• Using both layers increases performance.
• Using only RLDA’s lower layer is still better than LDA.
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Figure 3: RLDA conditional probabilities for a two-layer model, which is then generalized to an L-layer model.

Table 1: Comparison to other hierarchical and single-feature approaches.

Approach Caltech-101
Model Layer(s) used 15 30

Our Model
RLDA (1024t/128b) bottom 56.6 ± 0.8% 62.7 ± 0.5%
RLDA (1024t/128b) top 66.7 ± 0.9% 72.6 ± 1.2%
RLDA (1024t/128b) both 67.4 ± 0.5 73.7 ± 0.8%

Hierarchical
Models

Sparse-HMAX [21] top 51.0% 56.0%
CNN [15] bottom – 57.6 ± 0.4%
CNN [15] top – 66.3 ± 1.5%
CNN + Transfer [2] top 58.1% 67.2%
CDBN [17] bottom 53.2 ± 1.2% 60.5 ± 1.1%
CDBN [17] both 57.7 ± 1.5% 65.4 ± 0.4%
Hierarchy-of-parts [8] both 60.5% 66.5%
Ommer and Buhmann [22] top – 61.3 ± 0.9%

Caltech-101 evaluations. A spatial pyramid with 3 layers
of square grids of 1, 2, and 4 cells each was always con-
structed on top of our features. Guided by the best practices
outlined in a recent comparison of different pooling and fac-
torization functions [5], we used max pooling for the spatial
pyramid aggregation. For classification, we used a linear
SVM, following the state-of-the-art results of Yang et al.
[30]. Caltech-101 is a dataset comprised of 101 object cat-
egories, with differing numbers of images per category [7].
Following standard procedure, we use 30 images per cat-
egory for training and the rest for testing. Mean accuracy
and standard deviation are reported for 8 runs over different
splits of the data, normalized per class.

We first tested a one-layer LDA over SIFT features.
For 128 components we obtain classification accuracy of
58.7%. Performance increases as we increase the number
of components, demonstrating the lack of discrimination of
the baseline LDA-SIFT model: for 1024 topics the perfor-
mance is 68.8% and 70.4% if we used 2048 topics.

The main emphasis of our experiments is to evaluate
the contribution of additional layers to classification perfor-
mance. We tested models FLDA and RLDA (described in
4.1) in the same regime as described above.

As an initial experiment, we constrained the number
of topics to 128 and trained three models: single-layer,
FLDA, and RLDA. The two-layer models were trained with
128 topics on the bottom layer, corresponding to factorized
SIFT descriptors, and 128 on the top. Only the top-layer
topics were used for classification, so the effective total
number of topics in the two-layer models was the same as
the single-layer model. We present the results in Table 2.
Both two-layer models improved on the one-layer LDA-
SIFT model trained with 128 topics, obtaining respective
classification rates of 61.3% and 66.0%, compared to the
LDA-SIFT result of 58.7%. Detailed results across differ-
ent numbers of training examples are shown in Figure 4a.
The curves show that the RLDA model consistently outper-
forms the feed-forward FLDA model, which in turn outper-
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