
Timely Object Recognition

Sergey Karayev
UC Berkeley

Tobias Baumgartner
RWTH Aachen University

Mario Fritz
MPI for Informatics

Trevor Darrell
UC Berkeley

Abstract

In a large visual multi-class detection framework, the timeliness of results can be
crucial. Our method for timely multi-class detection aims to give the best possible
performance at any single point after a start time; it is terminated at a deadline
time. Toward this goal, we formulate a dynamic, closed-loop policy that infers the
contents of the image in order to decide which detector to deploy next. In contrast
to previous work, our method significantly diverges from the predominant greedy
strategies, and is able to learn to take actions with deferred values. We evaluate our
method with a novel timeliness measure, computed as the area under an Average
Precision vs. Time curve. Experiments are conducted on the PASCAL VOC object
detection dataset. If execution is stopped when only half the detectors have been
run, our method obtains 66% better AP than a random ordering, and 14% better
performance than an intelligent baseline. On the timeliness measure, our method
obtains at least 11% better performance. Our method is easily extensible, as it
treats detectors and classifiers as black boxes and learns from execution traces
using reinforcement learning.

1 Introduction

In real-world applications of visual object recognition, performance is time-sensitive. In robotics,
a small finite amount of processing power per unit time is all that is available for robust object
detection, if the robot is to usefully interact with humans. In large-scale detection systems, such as
image search, results need to be obtained quickly per image as the number of items to process is
constantly growing. In such cases, an acceptable answer at a reasonable time may be more valuable
than the best answer given too late.

A hypothetical system for vision-based advertising presents a case study: companies pay money to
have their products detected in images on the internet. The system has different values (in terms of
cost per click) and accuracies for different classes of objects, and the queue of unprocessed images
varies in size. The detection strategy to maximize profit in such an environment has to exploit every
inter-object context signal available to it, because there is not enough time to run detection for all
classes.

What matters in the real world is timeliness, and either not all images can be processed or not all
classes can be evaluated in a detection task. Yet the conventional approach to evaluating visual
recognition does not consider efficiency, and evaluates performance independently across classes.
We argue that the key to tackling problems of dynamic recognition resource allocation is to start
asking a new question: What is the best performance we can get on a budget?

Taking the task of object detection, we propose a new timeliness measure of performance vs. time
(shown in Figure 1). We present a method that treats different detectors and classifiers as black
boxes, and uses reinforcement learning to learn a dynamic policy for selecting actions to achieve the
highest performance under this evaluation.

Specifically, we run scene context and object class detectors over the whole image sequentially,
using the results of detection obtained so far to select the next actions. Evaluating on the PASCAL

1

C3C2C1

adet1 adet2 adet3

agist

C3C2C1

adet1 adet2 adet3

agist

t = 0.1

t = 0.3

t = 0
C3C2C1

adet1 adet2 adet3

agist

scene context

2

machine translation and information retrieval. For ex-
ample, until recently speech recognition and machine
translation systems based on n-gram language models
outperformed systems based on grammars and phrase
structure. In our experience maintaining performance
seems to require gradual enrichment of the model.

One reason why simple models can perform better in
practice is that rich models often suffer from difficulties
in training. For object detection, rigid templates and bag-
of-features models can be easily trained using discrimi-
native methods such as support vector machines (SVM).
Richer models are more difficult to train, in particular
because they often make use of latent information.

Consider the problem of training a part-based model
from images labeled only with bounding boxes around
the objects of interest. Since the part locations are not
labeled, they must be treated as latent (hidden) variables
during training. While it is possible that more complete
labeling would support better training, it could also
result in inferior training if the labeling used subop-
timal parts. Automatic part labeling has the potential
to achieve better performance by automatically finding
effective parts. More elaborate labeling is also time con-
suming and expensive.

The Dalal-Triggs detector [10], which won the 2006
PASCAL object detection challenge, used a single filter
on histogram of oriented gradients (HOG) features to
represent an object category. The Dalal-Triggs detector
uses a sliding window approach, where a filter is applied
at all positions and scales of an image. We can think
of the detector as a classifier which takes as input an
image, a position within that image, and a scale. The
classifier determines whether or not there is an instance
of the target category at the given position and scale.
Since the model is a simple filter we can compute a score
as � · �(x) where � is the filter, x is an image with a
specified position and scale, and �(x) is a feature vector.
A major innovation of the Dalal-Triggs detector was the
construction of particularly effective features.

Our first innovation involves enriching the Dalal-
Triggs model using a star-structured part-based model
defined by a “root” filter (analogous to the Dalal-Triggs
filter) plus a collection of part filters and associated
deformation models. The score of one of our star models
at a particular position and scale within an image is the
score of the root filter at the given location plus the
sum over parts of the maximum, over placements of
that part, of the part filter score on its location minus
a deformation cost measuring the deviation of the part
from its ideal location. Both root and part filter scores
are defined by the dot product between a filter (a set
of weights) and a subwindow of a feature pyramid
computed from the input image. Figure 1 shows a star
model for the person category. One interesting aspect
of our models is that the features for the part filters are
computed at twice the spatial resolution of the root filter.

To train models using partially labeled data we use a
latent variable formulation of MI-SVM [3] that we call

(a) (b) (c)

Fig. 1. Detections obtained with a single component
person model. The model is defined by a coarse root filter
(a), several higher resolution part filters (b) and a spatial
model for the location of each part relative to the root
(c). The filters specify weights for histogram of oriented
gradients features. Their visualization show the positive
weights at different orientations. The visualization of the
spatial models reflects the “cost” of placing the center of
a part at different locations relative to the root.

latent SVM (LSVM). In a latent SVM each example x is
scored by a function of the following form,

f�(x) = max
z2Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent
values, and �(x, z) is a feature vector. In the case of one
of our star models � is the concatenation of the root
filter, the part filters, and deformation cost weights, z is
a specification of the object configuration, and �(x, z) is
a concatenation of subwindows from a feature pyramid
and part deformation features.

We note that (1) can handle very general forms of
latent information. For example, z could specify a deriva-
tion under a rich visual grammar.

Our second class of models represents each object
category by a mixture of star models. The score of one
of our mixture models at a given position and scale
is the maximum over components, of the score of that
component model at the given location. In this case the
latent information, z, specifies a component label and
a configuration for that component. Figure 2 shows a
mixture model for the bicycle category.

To obtain high performance using discriminative train-
ing it is often important to use large training sets. In the
case of object detection the training problem is highly un-
balanced because there is vastly more background than
objects. This motivates a process of searching through

3

Fig. 2. Detections obtained with a 2 component bicycle model. These examples illustrate the importance of
deformations mixture models. In this model the first component captures sideways views of bicycles while the second
component captures frontal and near frontal views. The sideways component can deform to match a “wheelie”.

the background to find a relatively small number of
potential false positives.

A methodology of data-mining for hard negative ex-
amples was adopted by Dalal and Triggs [10] but goes
back at least to the bootstrapping methods used by [38]
and [35]. Here we analyze data-mining algorithms for
SVM and LSVM training. We prove that data-mining
methods can be made to converge to the optimal model
defined in terms of the entire training set.

Our object models are defined using filters that score
subwindows of a feature pyramid. We have investigated
feature sets similar to HOG [10] and found lower dimen-
sional features which perform as well as the original
ones. By doing principal component analysis on HOG
features the dimensionality of the feature vector can be
significantly reduced with no noticeable loss of informa-
tion. Moreover, by examining the principal eigenvectors
we discover structure that leads to “analytic” versions of
low-dimensional features which are easily interpretable
and can be computed efficiently.

We have also considered some specific problems that
arise in the PASCAL object detection challenge and sim-
ilar datasets. We show how the locations of parts in an
object hypothesis can be used to predict a bounding box
for the object. This is done by training a model specific
predictor using least-squares regression. We also demon-
strate a simple method for aggregating the output of
several object detectors. The basic idea is that objects of

some categories provide evidence for, or against, objects
of other categories in the same image. We exploit this
idea by training a category specific classifier that rescores
every detection of that category using its original score
and the highest scoring detection from each of the other
categories.

2 RELATED WORK

There is a significant body of work on deformable mod-
els of various types for object detection, including several
kinds of deformable template models (e.g. [7], [8], [21],
[43]), and a variety of part-based models (e.g. [2], [6], [9],
[15], [18], [20], [28], [42]).

In the constellation models from [18], [42] parts are
constrained to be in a sparse set of locations determined
by an interest point operator, and their geometric ar-
rangement is captured by a Gaussian distribution. In
contrast, pictorial structure models [15], [20] define a
matching problem where parts have an individual match
cost in a dense set of locations, and their geometric
arrangement is constrained by a set of “springs” connect-
ing pairs of parts. The patchwork of parts model from [2]
is similar, but it explicitly considers how the appearance
model of overlapping parts interact to define a dense
appearance model for images.

Our models are largely based on the pictorial struc-
tures framework from [15], [20]. We use a dense set of
possible positions and scales in an image, and define a

bicycle detector

person detector

Ts

Ts

Ts

Td

Td

Td

tim
e

Figure 1: A sample trace of our method. At each time step beginning at t = 0, potential actions
are considered according to their predicted value, and the maximizing action is picked. The selected
action is performed and returns observations. Different actions return different observations: a
detector returns a list of detections, while a scene context action simply returns its computed feature.
The belief model of our system is updated with the observations, which influences the selection of the
next action. The final evaluation of a detection episode is the area of the AP vs. Time curve between
given start and end times. The value of an action is the expected result of final evaluation if the
action is taken and the policy continues to be followed, which allows actions without an immediate
benefit to be scheduled.

VOC dataset and evaluation regime, we are able to obtain better performance than all baselines when
there is less time available than is needed to exhaustively run all detectors.

2 Recognition Problems and Related Work

Formally, we deal with a dataset of images D, where each image I contains zero or more objects.
Each object is labeled with exactly one category label k ∈ {1, . . . ,K}.
The multi-class, multi-label classification problem asks whether I contains at least one object of
class k. We write the ground truth for an image as C = {C1, . . . , CK}, where Ck ∈ {0, 1} is set to
1 if an object of class k is present.

The detection problem is to output a list of bounding boxes (sub-images defined by four coordi-
nates), each with a real-valued confidence that it encloses a single instance of an object of class k,
for each k. The answer for a single class k is given by an algorithm detect(I, k), which outputs a
list of sub-image bounding boxes B and their associated confidences.

Performance is evaluated by plotting precision vs. recall across datasetD (by progressively lowering
the confidence threshold for a positive detection). The area under the curve yields the Average
Precision (AP) metric, which has become the standard evaluation for recognition performance on
challenging datasets in vision [1]. A common measure of a correct detection is the PASCAL overlap:
two bounding boxes are considered to match if they have the same class label and the ratio of their
intersection to their union is at least 1

2 .

To highlight the hierarchical structure of these problems, we note that the confidences for each sub-
image b ∈ B may be given by classify(b, k), and, more saliently for our setup, correct answer to the
detection problem also answers the classification problem.

2

Multi-class performance is evaluated by averaging the individual per-class AP values. In a special-
ized system such as the advertising case study from section 1, the metric generalizes to a weighted
average, with the weights set by the values of the classes.

2.1 Related Work

Object detection The best recent performance has come from detectors that use gradient-based
features to represent objects as either a collection of local patches or as object-sized windows [2, 3].
Classifiers are then used to distinguish between featurizations of a given class and all other possible
contents of an image window. Window proposal is most often done exhaustively over the image
space, as a “sliding window”.

For state-of-the-art performance, the object-sized window models are augmented with parts [4],
and the bag-of-visual-words models employ non-linear classifiers [5]. We employ the widely used
Deformable Part Model detector [4] in our evaluation.
Using context The most common source of context for detection is the scene or other non-detector
cues; the most common scene-level feature is the GIST [6] of the image. We use this source of scene
context in our evaluation.

Inter-object context has also been shown to improve detection [7]. In a standard evaluation setup,
inter-object context plays a role only in post-filtering, once all detectors have been run. In contrast,
our work leverages inter-object context in the action-planning loop.

A critical summary of the main approaches to using context for object and scene recognition is given
in [8]. For the commonly used PASCAL VOC dataset [1], GIST and other sources of context are
quantitatively explored in [9].
Efficiency through cascades An early success in efficient object detection of a single class uses
simple, fast features to build up a cascade of classifiers, which then considers image regions in
a sliding window regime [10]. Most recently, cyclic optimization has been applied to optimize
cascades with respect to feature computation cost as well as classifier performance [11].

Cascades are not dynamic policies: they cannot change the order of execution based on observations
obtained during execution, which is our goal.
Anytime and active classification This surprisingly little-explored line of work in vision is clos-
est to our approach. A recent application to the problem of visual detection picks features with
maximum value of information in a Hough-voting framework [12]. There has also been work on
active classification [13] and active sensing [14], in which intermediate results are considered in
order to decide on the next classification step. Most commonly, the scheduling in these approaches
is greedy with respect to some manual quantity such as expected information gain. In contrast, we
learn policies that take actions without any immediate reward.

3 Multi-class Recognition Policy

Our goal is a multi-class recognition policy π that takes an image I and outputs a list of multi-class
detection results by running detector and global scene actions sequentially.

The policy repeatedly selects an action ai ∈ A, executes it, receiving observations oi, and then
selects the next action. The set of actionsA can include both classifiers and detectors: anything that
would be useful for inferring the contents of the image.

Each action ai has an expected cost c(ai) of execution. Depending on the setting, the cost can be
defined in terms of algorithmic runtime analysis, an idealized property such as number of flops, or
simply the empirical runtime on specific hardware. We take the empirical approach: every executed
action advances t, the time into episode, by its runtime.

As shown in Figure 1, the system is given two times: the setup time Ts and deadline Td. We
want to obtain the best possible answer if stopped at any given time between the setup time and
the deadline. A single-number metric that corresponds to this objective is the area captured under
the curve between the start and deadline bounds, normalized by the total area. We evaluate policies
by this more robust metric and not simply by the final performance at deadline time for the same

3

reason that Average Precision is used instead of a fixed Precision vs. Recall point in the conventional
evaluations.

3.1 Sequential Execution

An open-loop policy, such as the common classifier cascade [10], takes actions in a sequence that
does not depend on observations received from previous actions. In contrast, our goal is to learn a
dynamic, or closed-loop, policy, which would exploit the signal in scene and inter-object context for
a maximally efficient path through the actions.

We refer to the information available to the decision process as the state s. The state includes the
current estimate of the distribution over class presence variables P (C) = {P (C0), . . . , P (CK)},
where we write P (Ck) to mean P (Ck = 1) (class k is present in the image).

Additionally, the state records that an action ai has been taken by adding it to the initially empty
set O and recording the resulting observations oi. We refer to the current set of observations as
o = {oi|ai ∈ O}. The state also keeps track of the time into episode t, and the setup and deadline
times Ts, Td.

A recognition episode takes an image I and proceeds from the initial state s0 and action a0 to the
next pair (s1, a1), and so on until (sJ , aJ), where J is the last step of the process with t ≤ Td. At
that point, the policy is terminated, and a new episode can begin on a new image.

The specific actions we consider in the following exposition are detector actions adeti , where deti
is a detector class Ci, and a scene-level context action agist, which updates the probabilities of
all classes. Although we avoid this in the exposition, note that our system easily handles multiple
detector actions per class.

3.2 Selecting actions

As our goal is to pick actions dynamically, we want a function Q(s, a) : S×A 7→ R, where S is the
space of all possible states, to assign a value to a potential action a ∈ A given the current state s of
the decision process. We can then define the policy π as simply taking the action with the maximum
value:

π(s) = argmax
ai∈A\O

Q(s, ai) (1)

Although the action spaceA is manageable, the space of possible states S is intractable, and we must
use function approximation to represent Q(s, a): a common technique in reinforcement learning
[15]. We featurize the state-action pair and assume linear structure:

Qπ(s, a) = θ>π φ(s, a) (2)

The policy’s performance at time t is determined by all detections that are part of the set of observa-
tions oj at the last state sj before t. Recall that detector actions returns lists of detection hypotheses.
Therefore, the final AP vs. Time evaluation of an episode is a function eval(h, Ts, Td) of the history
of execution h = s0, s1, . . . , sJ . It is precisely the normalized area under the AP vs. Time curve
between Ts and Td, as determined by the detections in oj for all steps j in the episode.

Note from Figure 3b that this evaluation function is additive per action, as each action a generates
observations that may raise or lower the mean AP of the results so far (∆ap) and takes a certain time
(∆t). We can accordingly represent the final evaluation eval(h, Ts, Td) in terms of individual action
rewards:

∑J
j=0R(sj , aj).

Specifically, as shown in Figure 3b, we define the reward of an action a as

R(sj , a) = ∆ap(tjT −
1

2
∆t) (3)

where tjT is the time left until Td at state sj , and ∆t and ∆ap are the time taken and AP change
produced by the action a. (We do not account for Ts here for clarity of exposition.)

4

3.3 Learning the policy

The expected value of the final evaluation can be written recursively in terms of the value function:

Qπ(sj , a) = Esj+1 [R(sj , a) + γQπ(sj+1, π(sj+1))] (4)

where γ ∈ [0, 1] is the discount value.

With γ = 0, the value function is determined entirely by the immediate reward, and so only com-
pletely greedy policies can be learned. With γ = 1, the value function is determined by the correct
expected rewards to the end of the episode. However, a lower value of γ mitigates the effects of
increasing uncertainty regarding the state transitions over long episodes. We set this meta-parameter
of our approach through cross-validation, and find that a mid-level value (0.4) works best.

While we can’t directly compute the expectation in (4), we can sample it by running actual episodes
to gather < s, a, r, s′ > samples, where r is the reward obtained by taking action a in state s, and s′
is the following state.

We then learn the optimal policy by repeatedly gathering samples with the current policy, minimizing
the error between the discounted reward to the end of the episode as predicted by our currentQ(sj , a)
and the actual values gathered, and updating the policy with the resulting weights.

To ensure sufficient exploration of the state space, we implement ε-greedy action selection during
training: with a probability that decreases with each training iteration, a random action is selected
instead of following the policy. During test time, ε is set to 0.05.

To prevent overfitting to the training data, we use L2-regularized regression. We run 15 iterations
of accumulating samples by running 350 episodes, starting with a baseline policy which will be
described in section 4, and cross-validating the regularization parameter at each iteration. Samples
are not thrown away between iterations.

With pre-computed detections on the PASCAL VOC 2007 dataset, the training procedure takes
about 4 hours on an 8-core Xeon E5620 machine.

3.4 Feature representation

Our policy is at its base determined by a linear function of the features of the state:

π(s) = argmax
ai∈A\O

θ>π φ(s, ai). (5)

We include the following quantities as features φ(s, a):

P (Ca) The prior probability of the class that corresponds to the detector of
action a (omitted for the scene-context action).

P (C0|o) . . . P (CK |o) The probabilities for all classes, conditioned on the current set of
observations.

H(C0|o) . . . H(CK |o) The entropies for all classes, conditioned on the current set of obser-
vations.

Additionally, we include the mean and maximum of [H(C0|o) . . . H(CK |o)], and 4 time features
that represent the times until start and deadline, for a total of F = 1 + 2K + 6 features.

We note that this setup is commonly used to solve Markov Decision Processes [15]. There are two
related limitations of MDPs when it comes to most systems of interesting complexity, however: the
state has to be functionally approximated instead of exhaustively enumerated; and some aspects of
the state are not observed, making the problem a Partially Observed MDP (POMDP), for which
exact solution methods are intractable for all but rather small problems [16]. Our initial solution to
the problem of partial observability is to include features corresponding to our level of uncertainty
into the feature representation, as in the technique of augmented MDPs [17].

To formulate learning the policy as a single regression problem, we represent the features in block
form, where φ(s, a) is a vector of size F |A|, with all values set to 0 except for the F -sized block
corresponding to a.

5

As an illustration, we visualize the learned weights on these features in Figure 2, reshaped such that
each row shows the weights learned for an action, with the top row representing the scene context
action and then next 20 rows corresponding to the PASCAL VOC class detector actions.

P (C|o) H(C|o)

GIST action

GIST action

timeP (Ca)

R
L

G
reed

y

(a) Greedy

P (C|o) H(C|o)

GIST action

GIST action

timeP (Ca)

R
L

G
reed

y

P (C|o) H(C|o)

GIST action

GIST action

timeP (Ca)

R
L

G
reed

y

(b) Reinforcement Learning

Figure 2: Learned policy weights θπ (best viewed in color: red corresponds to positive, blue to
negative values). The first row corresponds to the scene-level action, which does not generate de-
tections itself but only helps reduce uncertainty about the contents of the image. Note that in the
greedy learning case, this action is learned to never be taken, but it is shown to be useful in the
reinforcement learning case.

3.5 Updating with observations

The bulk of our feature representation is formed by probability of individual class occurrence, con-
ditioned on the observations so far: P (C0|o) . . . P (CK |o). This allows the action-value function
to learn correlations between presence of different classes, and so the policy can look for the most
probable classes given the observations.

However, higher-order co-occurrences are not well represented in this form. Additionally, updating
P (Ci|o) presents choices regarding independence assumptions between the classes. We evaluate
two approaches for updating probabilities: direct and MRF.

In the direct method, P (Ci|o) = score(Ci) if o includes the observations for class Ci and
P (Ci|o) = P (Ci) otherwise. This means that an observation of class i does not directly influ-
ence the estimated probability of any class but Ci.

The MRF approach employs a pairwise fully-connected Markov Random Field (MRF), as shown in
Figure 1, with the observation nodes set to score(Ci) appropriately, or considered unobserved.

The graphical model structure is set as fully-connected, but some classes almost never co-occurr
in our dataset. Accordingly, the edge weights are learned with L1 regularization, which obtains a
sparse structure [18]. All parameters of the model are trained on fully-observed data, and Loopy
Belief Propagation inference is implemented with an open-source graphical model package [19].

An implementation detail: score(Ci) for adeti is obtained by training a probabilistic classifier on
the list of detections, featurized by the top few confidence scores and the total number of detections.
Similarly, score(Ci) for agist is obtained by training probabilistic classifiers on the GIST feature,
for all classes.

4 Evaluation

We evaluate our system on the multi-class, multi-label detection task, as previously described. We
evaluate on a popular detection challenge task: the PASCAL VOC 2007 dataset [1]. This datasets
exhibits a rather modest amount of class co-occurrence: the “person” class is highly likely to occur,
and less than 10% of the images have more than two classes.

We learn weights on the training and validation sets, and run our policy on all images in the testing
set. The final evaluation pools all detections up to a certain time, and computes their multi-class AP
per image, averaging over all images. This is done for different times to plot the AP vs. Time curve
over the whole dataset. Our method of averaging per-image performance follows [20].

6

For the detector actions, we use one-vs-all cascaded deformable part-model detectors on a HOG
featurization of the image [21], with linear classification of the list of detections as described in
the previous section. There are 20 classes in the PASCAL challenge task, so there are 20 detector
actions. Running a detector on a PASCAL image takes about 1 second.

We test three different settings of the start and deadline times. In the first one, the start time is
immediate and execution is cut off at 20 seconds, which is enough time to run all actions. In the
second one, execution is cut off after only 10 seconds. Lastly, we measure performance between 5
seconds and 15 seconds. These operating points show how our method behaves when deployed in
different conditions. The results are given in rows of Table 1.

(a)

Ts
tjT Td

�t

�
ap �ap(tjT � 1

2
�t)

(b)

Figure 3: (a) AP vs. Time curves for Random, Oracle, the Fixed Order baseline, and our best-
performing policy. (b) Graphically representing our reward function, as described in section 3.2.

We establish the first baseline for our system by selecting actions randomly at each step. As shown
in Figure 3a, the Random policy results in a roughly linear gain of AP vs. time. This is expected:
the detectors are capable of obtaining a certain level of performance; if half the detectors are run,
the expected performance level is half of the maximum level.

To establish an upper bound on performance, we plot the Oracle policy, obtained by re-ordering the
actions at the end of each detection episode in the order of AP gains they produced.

We consider another baseline: selecting actions in a fixed order based on the value they bring to the
AP vs. Time evaluation, which is roughly proportional to their occurrence probability. We refer to
this as Fixed Order.

Then there are instantiations of our method, as described in the previous section : RL w/ Direct
inference and RL w/ MRF inference. As the MRF model consistently outperformed Direct by a
small margin, we report results for that model only.

In Figure 3a, we can see that due to the dataset bias, the fixed-order policy performs well at first, as
the person class is disproportionately likely to be in the image, but is significantly overtaken by our
model as execution goes on and more rare classes have to be detected.

Lastly, we include an additional scene-level GIST feature that updates the posterior probabilities of
all classes. This is considered one action, and takes about 0.3 seconds. This setting always uses the
MRF model to properly update the class probabilities with GIST observations. This brings another
small boost in performance. The results are shown in Table 1.

Visualizing the learned weights in Figure 2, we note that the GIST action is learned to never be taken
in the greedy (γ = 0) setting, but is learned to be taken with a higher value of γ. It is additionally
informative to consider the action trajectories of different policies in Figure 4.

7

Figure 4: Visualizing the action trajectories of different policies. Action selection traces are plotted
in orange over many episodes; the size of the blue circles correspond to the increase in AP obtained
by the action. We see that the Random policy selects actions and obtains rewards randomly, while
the Oracle policy obtains all rewards in the first few actions. The Fixed Order policy selects actions
in a static optimal order. Our policy does not stick a static order but selects actions dynamically to
maximize the rewards obtained early on.

Table 1: The areas under the AP vs. Time curve for different experimental conditions.

Bounds Random Fixed Order RL RL w/ GIST Oracle
(0,20) 0.250 0.342 0.378 0.382 0.488
(0,10) 0.119 0.240 0.266 0.267 0.464
(5,15) 0.257 0.362 0.418 0.420 0.530

5 Conclusion
We presented a method for learning “closed-loop” policies for multi-class object recognition, given
existing object detectors and classifiers and a metric to optimize. The method learns the optimal
policy using reinforcement learning, by observing execution traces in training. If detection on an
image is cut off after only half the detectors have been run, our method does 66% better than a
random ordering, and 14% better than an intelligent baseline. In particular, our method learns to
take action with no intermediate reward in order to improve the overall performance of the system.

As always with reinforcement learning problems, defining the reward function requires some manual
work. Here, we derive it for the novel detection AP vs. Time evaluation that we suggest is useful
for evaluating efficiency in recognition. Although computation devoted to scheduling actions is less
significant than the computation due to running the actions, the next research direction is to explicitly
consider this decision-making cost; the same goes for feature computation costs. Additionally, it is
interesting to consider actions defined not just by object category but also by spatial region. The
code for our method is available1.

Acknowledgments

This research was made with Government support under and awarded by DoD, Air Force Office of
Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32
CFR 168a.

1http://sergeykarayev.com/work/timely/

8

http://sergeykarayev.com/work/timely/

References
[1] M Everingham, L Van Gool, C K I Williams, J Winn, and A Zisserman. The PASCAL VOC Challenge.

http://www.pascal-network.org/challenges/VOC/, 2010. 2, 3, 6

[2] N Dalal and B Triggs. Histograms of Oriented Gradients for Human Detection. In CVPR, pages 886–893,
2005. 3

[3] David G Lowe. Distinctive Image Features from Scale-Invariant Keypoints. IJCV, 60(2):91–110, Novem-
ber 2004. 3

[4] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Object detection with
discriminatively trained part-based models. PAMI, 32(9):1627–1645, September 2010. 3

[5] Andrea Vedaldi, Varun Gulshan, Manik Varma, and Andrew Zisserman. Multiple kernels for object
detection. ICCV, pages 606–613, September 2009. 3

[6] Aude Oliva and Antonio Torralba. Modeling the Shape of the Scene: A Holistic Representation of the
Spatial Envelope. IJCV, 42(3):145–175, 2001. 3

[7] Antonio Torralba, Kevin P Murphy, and William T Freeman. Contextual Models for Object Detection
Using Boosted Random Fields. MIT CSAIL Technical Report, 2004. 3

[8] Carolina Galleguillos and Serge Belongie. Context based object categorization: A critical survey. Com-
puter Vision and Image Understanding, 114(6):712–722, June 2010. 3

[9] Santosh K Divvala, Derek Hoiem, James H Hays, Alexei A Efros, and Martial Hebert. An empirical study
of context in object detection. In CVPR, pages 1271–1278, June 2009. 3

[10] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple features. In
CVPR, 2001. 3, 4

[11] Minmin Chen, Zhixiang (Eddie) Xu, Kilian Q Weinberger, Olivier Chapelle, and Dor Kedem. Classifier
Cascade for Minimizing Feature Evaluation Cost. In AISTATS, 2012. 3

[12] Sudheendra Vijayanarasimhan and Ashish Kapoor. Visual Recognition and Detection Under Bounded
Computational Resources. In CVPR, pages 1006–1013, 2010. 3

[13] Tianshi Gao and Daphne Koller. Active Classification based on Value of Classifier. In NIPS, 2011. 3

[14] Shipeng Yu, Balaji Krishnapuram, Romer Rosales, and R Bharat Rao. Active Sensing. In AISTATS, pages
639–646, 2009. 3

[15] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT Press, 1998. 4, 5

[16] Nicholas Roy and Geoffrey Gordon. Exponential Family PCA for Belief Compression in POMDPs. In
NIPS, 2002. 5

[17] Cody Kwok and Dieter Fox. Reinforcement Learning for Sensing Strategies. In IROS, 2004. 5

[18] Su-In Lee, Varun Ganapathi, and Daphne Koller. Efficient Structure Learning of Markov Networks using
L1-Regularization. In NIPS, 2006. 6

[19] Ariel Jaimovich and Ian Mcgraw. FastInf: An Efficient Approximate Inference Library. Journal of
Machine Learning Research, 11:1733–1736, 2010. 6

[20] Chaitanya Desai, Deva Ramanan, and Charless Fowlkes. Discriminative models for multi-class object
layout. In ICCV, pages 229–236, September 2009. 6

[21] Pedro F Felzenszwalb, Ross B Girshick, and David McAllester. Cascade object detection with deformable
part models. In CVPR, pages 2241–2248. IEEE, June 2010. 7

9

